- PII
- S30345758S0032823525040065-1
- DOI
- 10.7868/S3034575825040065
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 4
- Pages
- 618-627
- Abstract
- The paper concerns investigation of nonlinear moment shells theories equations application to solution of axisymmetric hyperelastic cylindrical shell static inflation problems. Elasticity equations used for calculation of shells deforming at arbitrary displacements and rotations and relations are obtained on the basis of a modified Kirchhoff–Love model. Results of calculations of linear elastic and neo-Hookean cylindrical shell based on moment theories relations and traditionally used for considered problems solution momentless theory are compared. Shell thickness is considered to be both constant and variable. It is shown that moment theories equations are suitable only when stress-strain state rapidly varying along a meridian. These equations possess a well-posedeness in comparison to equations of shells theory based on the modified Kirchhoff–Love model.
- Keywords
- гиперупругие материалы нелинейная безмоментная теория оболочек нелинейная моментная теория оболочек большие деформации
- Date of publication
- 03.12.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 18
References
- 1. Усюкин В.И. Строительная механика конструкций космической техники. М.: Машиностроение, 1988. 392 с.
- 2. Кылытчанов К.М. Некоторые задачи статики мягких оболочек при больших деформациях. Диссертация на соискание ученой степени канд. физ.-мат. наук, Л.: 1984. 133 с.
- 3. Друзь Б.И. и др. Постановка и численное решение задач динамики и равновесия мягких оболочек // Сборник ДВВИМУ. Исследования по судовым мягким и гибким конструкциям. 1982. С. 113–130.
- 4. Колпак Е.П. Устойчивость и закритические состояния безмоментных оболочек при больших деформациях. Диссертация на соискание ученой степени д-ра физ.-мат. наук, СПб: 2000. 334 с.
- 5. Колесников А.М. Большие деформации высокоэластичных оболочек. Диссертация на соискание ученой степени канд. физ.-мат. наук, Ростов-на-Дону: 2006. 115 с.
- 6. Гимадиев Р.Ш., Гимадиева Т.З., Паймушин В.Н. О динамическом процессе раздувания тонких оболочек из эластомеров под действием избыточного давления // Прикладная математика и механика. 2014. Т. 78. Вып. 2. С. 236–248. https://doi.org/10.1016/j.jappmathmech.2014.07.009
- 7. Усюкин В.И. Техническая теория мягких оболочек. Диссертация на соискание ученой степени д-ра тех. наук, М: 1971. 361 с.
- 8. Усюкин В.И. Об уравнениях теории больших деформаций мягких оболочек // Известия АН СССР. Механика твердого тела. 1976. № 1. С. 70–75.
- 9. Healey T.J., Li Q., Cheng RB. Wrinkling Behavior of Highly Stretched Rectangular Elastic Films via Parametric Global Bifurcation // Journal of Nonlinear Science. 2013. v. 23. p. 777–805. https://doi.org/10.1007/s00332-013-9168-3
- 10. Li Qingdu, Healey Timothy. Stability boundaries for wrinkling in highly stretched elastic sheets // Journal of the Mechanics and Physics of Solids. 2016. v. 97. p. 260–274. https://doi.org/10.1016/j.jmps.2015.12.001
- 11. Fu C., Wang T., Xu F., Huo Y., Potier-Ferry M. A modeling and resolution framework for wrinkling in hyperelastic sheets at fnite membrane strain // Journal of the Mechanics and Physics of Solids. 2018. v. 124, p. 446–470. https://doi.org/10.1016/j.jmps.2018.11.005
- 12. He L., Lou J., Dong Y. et al. Variational modeling of plane-strain hyperelastic thin beams with thickness-stretching effect // Acta Mechanica. 2018. v. 229. p. 4845–4861. https://doi.org/10.1007/s00707-018-2258-4
- 13. Wang Y., Zhu W. Nonlinear transverse vibration of a hyperelastic beam under harmonically axial loading in the subcritical buckling regime // Applied Mathematical Modelling. 2021. v. 94. p. 597–618. https://doi.org/10.1016/j.apm.2021.01.030
- 14. Khaniki H.B., Ghayesh M.H., Chin R. et al. Nonlinear continuum mechanics of thick hyperelastic sandwich beams using various shear deformable beam theories // Continuum Mechanics and Thermodynamics. 2022. v. 34. p. 781–827. https://doi.org/10.1007/s00161-022-01090-y
- 15. Steigmann D.J. Thin-plate theory for large elastic deformations // International Journal of Non-Linear Mechanics. 2007. v. 42 (2). p. 233–240. https://doi.org/10.1016/j.ijnonlinmec.2006.10.004
- 16. Amabili M., Balasubramanian P., Breslavsky I.D. et al. Experimental and numerical study on vibrations and static deflection of a thin hyperelastic plate // Journal of Sound and Vibration. 2016. v. 385. p. 81–92. https://doi.org/10.1016/j.jsv.2016.09.015
- 17. Breslavsky I.D., Amabili M., Legrand M. Static and Dynamic Behavior of Circular Cylindrical Shell Made of Hyperelastic Arterial Material // Journal of Applied Mechanics. 2016. v. 83 (5). 9 p. https://doi.org/10.1115/1.4032549
- 18. Amabili M., Breslavsky I.D., Reddy J.N. Nonlinear higher-order shell theory for incompressible biological hyperelastic materials // Computer Methods in Applied Mechanics and Engineering. 2019. v. 346. p. 841–861. https://doi.org/10.1016/j.cma.2018.09.023
- 19. Zhang J., Xu J., Yuan X. et al. Nonlinear Vibration Analyses of Cylindrical Shells Composed of Hyperelastic Materials // Acta Mechanica Solida Sinica. 2019. v. 32. p. 463–482. https://doi.org/10.1007/s10338-019-00114-6
- 20. Паймушин В.Н. Теория тонких оболочек при конечных перемещениях и деформациях, основанная на модифицированной модели Кирхгофа-Лява // Прикладная математика и механика. 2011. Т. 75. Вып.5. С. 813–829.
- 21. Коровайцева Е.А. Смешанные уравнения теории мягких оболочек // Труды МАИ. 2019. № 108. https://doi.org/10.34759/trd-2019-108-1
- 22. Шаповалов Л.А. Уравнения эластики тонкой оболочки при неосесимметричной деформации // Известия АН СССР. Механика твердого тела. 1976. № 3. С. 62–72.
- 23. Коровайцева Е.А. Моделирование процессов деформирования тонкостенных оболочек вращения из гиперупругих материалов. Диссертация на соискание ученой степени докт. физ.-мат. наук, МГУ, Москва: 2023. 290 с.