RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

THE STABILITY IN COUETTE—TAYLOR FLOW OF A VISCOELASTIC KELVIN—VOIGHT FLUID

PII
S3034575825050129-1
DOI
10.7868/S3034575825050129
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 5
Pages
877-888
Abstract
This paper considers the stability of a flow of a weak polymer solution between concentric cylinders, the inner of which rotates. A case of Kelvin–Voight model, frequently called Oskolkov model, was used to describe the movement of the fluid. This model is applicable for highly diluted solutions, where the relaxation time is much less than the typical flow time scale and the elastic forces are much less the viscous. The stability was investigated by the linear approach using the differential sweep numerical method. It is found that for axisymmetric perturbations, as well as in the case of small gap between the cylinders, the critical Reynolds numbers are close to the case of Newtonian fluid. In the case of medium and small values of the inner cylinder radius, the viscoelastic fluid is less stable with respect to the non-axisymmetric disturbances than the viscous one. The critical Reynolds numbers for the non-axisymmetric spiral perturbations may be lower than for the axisymmetric Taylor vortices.
Keywords
вязкоупругая жидкость гидродинамическая устойчивость течение Куэтта–Тейлора
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
12

References

  1. 1. Chossat P., Iooss G. The Couette-Taylor Problem // Appl. Math. Sci. 2012. V. 102. https://doi.org/10.1007/978-1-4612-4300-7
  2. 2. Larson R.G., Shaqfeh E.S.G., Muller S.J. A purely elastic instability in Taylor–Couette flow // J. of Fluid Mech. 1990. V. 218. P. 573–600. https://doi.org/10.1017/S0022112090001124
  3. 3. Bai Y., Latrache N., Kelai F. et al. Viscoelastic instabilities of Taylor–Couette flows with different rotation regimes // Philos. Trans. of the Royal Society A. 2023. V. 381. №. 2246. P. 20220133. https://doi.org/10.1098/rsta.2022.0133
  4. 4. Осколков А.П. Начально-краевые задачи для уравнений движения жидкостей Кельвина–Фойгта и жидкостей Олдройта // Труды матем. института им. В.А. Стеклова. 1988. Т. 179. С. 126–164.
  5. 5. Oskolkov A.P. Initial-boundary value problems for equations of motion of Kelvin–Voigt fluids and Oldroyd fluids // Proc. Steklov Inst. Math., 1987, vol. 179, pp. 137–182.
  6. 6. Павловский В.А. К вопросу о теоретическом описании слабых водных растворов полимеров // ДАН СССР. 1971. Т. 200. № 4. С. 809–812.
  7. 7. Pavlovskii V.A. To the Question of the Theoretical Description of Weak Aqueous Polymer Solutions // Sov. Phys. Dokl., 1971, vol. 200, no. 4, pp. 809–812.
  8. 8. Datta S.K. Note on the stability of an elasticoviscous liquid in Couette flow // The Physics of Fluids. 1964. V. 7. №. 12. P. 1915–1919. https://doi.org/10.1063/1.1711101
  9. 9. Ginn R.F., Denn M.M. Rotational stability in viscoelastic liquids: Theory // AIChE Journal. 1969. V. 15. №. 3. P. 450–454. https://doi.org/10.1002/aic.690150327
  10. 10. Lockett F.J., Rivlin R.S. Stability in Couette flow of a viscoelastic fluid. Part I // Collected Papers of R.S. Rivlin. 1997. V. 1,2. P. 1978–2001. https://doi.org/10.1007/978-1-4612-2416-7_133
  11. 11. Smith M.M., Rivlin R.S. Stability in Couette flow of a viscoelastic fluid Part II // Collected Papers of R.S. Rivlin. 1997. V. 1,2. P. 2032–2057. https://doi.org/10.1007/978-1-4612-2416-7_135
  12. 12. Гольдштик М.А., Штерн В.Н. Гидродинамическая устойчивость и турбулентность. Новосибирск: Наука. Сиб. отд-ние, 1977.
  13. 13. Goldshtik M.A., Shtern V.N. Hydrodynamic stability and turbulence. — Nauka. Sib. otd., 1977. (In Russian)
  14. 14. Калиткин Н.Н. Численные методы. Санкт-Петербург: БХВ-Петербург, 2011.
  15. 15. Kalitkin N.N. Numerical methods. 2 ed. BHV-Peterburg, 2011. (In Russian)
  16. 16. Schmid P.J., Henningson D.S. Stability and transition in shear flows // Appl. Math. Sci. 2001. V. 142. https://doi.org/10.1007/978-1-4613-0185-1
  17. 17. Проскурин А.В. Устойчивость напорного течения между коаксиальными цилиндрами в продольном магнитном поле // Прикладная механика и техническая физика. 2020. Т. 61. № 6. С. 16–23.
  18. 18. Proskurin A.V. Stability of a Pressure-Driven Flow Between Coaxial Cylinders in a Longitudinal Magnetic Field // J. of Appl. Mech.& Techn. Phys., 2020, vol. 61, no. 6, pp. 917–924. https://doi.org/10.1134/S0021894420060024
  19. 19. Yaglom A.M. Hydrodynamic instability and transition to turbulence // Fluid Mech& Its Appl. 2012. V. 100. https://doi.org/10.1007/978-94-007-4237-6
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library