RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

MODELING DISSIPATIVE PROCESSES IN OPEN AND CLOSED HYDRODYNAMIC SYSTEMS

PII
S3034575825050091-1
DOI
10.7868/S3034575825050091
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 5
Pages
825-842
Abstract
In this paper, the modeling of transport processes in both closed and open hydrodynamic systems is discussed. The main focus is on reviewing the relevant mechanisms. It is shown that in weakly nonequilibrium systems, dissipative processes are caused by microscopic thermal molecular fluctuations, and their irreversibility is associated with the non-potential nature of intermolecular interactions. In open hydrodynamic systems the rheology of the fluid changes at sufficiently high shear rates. The nature of these changes is demonstrated using molecular dynamics simulations. It is established that with increasing shear rate, both simple liquid and nanofluids become pseudoplastic. In the latter case, the critical shear rate of rheology change depends on the concentration of nanoparticles and their size. However, at sufficiently high shear rates, dissipative processes cease to depend on the sizes of the internal structural elements of the medium. Its viscosity drops sharply. In all cases, the change in the rheology of the medium is associated with the transformation of its structure. In particular, with the degradation of the short-range order.
Keywords
вязкость диффузия молекулярная динамика наножидкости необратимость определяющие соотношения процессы переноса реология флуктуационная-диссипационная теорема
Date of publication
01.05.2025
Year of publication
2025
Number of purchasers
0
Views
14

References

  1. 1. Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. 831 с.
  2. 2. Loitsyanskii L.G. Mechanics of liquids and gases. Oxford–N.-Y.: Pergamon Press, 1966. 804 p. https://doi.org/10.1016/C2013-0-05328-5
  3. 3. Лойцянский Л.Г., Лурье А.И. Курс теоретической механики. Т. 2. М.: Дрофа, 2006. 719 с.
  4. 4. Loitsyansky L.G., Lurie A.I. Course of theoretical mechanics. V. 2. Dynamics. Moscow: Nauka, 1984. 604 p. (In Russian).
  5. 5. Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. 758 с.
  6. 6. Batchelor G.K. An introduction to fluid dynamics. Cambridge: University Press, 2012. 615 p. https://doi.org/10.1017/CBO9780511800955
  7. 7. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
  8. 8. Landau L.D., Lifshits E.M. Fluid mechanics. Elsiver, 2013. 558 p. https://doi.org/10.1016/C2013-0-03799-1
  9. 9. Седов Л.И. Механика сплошной среды. М.: Наука, 1970. 492 с.
  10. 10. Sedov L.I. A course in continuum mechanics. Wolters-Noordhoff, 1971. 305 p. https://lib.ugent.be/catalog/rug01:002004556
  11. 11. Гроот де С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
  12. 12. De Groot S., Mazur P. Nonequilibrium thermodynamics. Courier Corporation, 2013. 528 p.
  13. 13. Арнольд В.И. Математические методы классической механики. М.: Наука, 1974. 431 с.
  14. 14. Arnold V.I. Mathematical methods of classical mechanics. Springer-Verlag New York Inc., 1989. 511 p. https://doi.org/10.1007/978-1-4757-2063-1
  15. 15. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 1. Кинетическая теория. Новосибирск: НГАСУ, 2004. 320 с.
  16. 16. Rudyak V.Ya. Statistical aerohydromechanics of homogeneous and heterogeneous media. Vol. 1. Kinetic theory. Novosibirsk: NSUACE, 2004. 320 p. (In Russian)
  17. 17. Бэкингем Э., Клаверье П., Рейн Р. и др. Межмолекулярные взаимодействия: от двухатомных молекул до биополимеров. М.: Мир, 1981. 694 с.
  18. 18. Buckingham E., Clavier P., Rein R. et al. Intermolecular interactions: from diatomics to biopolymers. New York: Pullman Wiley-Interscience, 1978. 447 p.
  19. 19. Sinai Ya.G. Dynamical systems. Collection of papers. Singapore: World Scientific, 1991. 673 p.
  20. 20. Заславский Г.М. Стохастичность динамических систем. М.: Наука, 1984. 271 с.
  21. 21. Zaslavskiy G.M. Stochasticity of dynamical system. Moscow: Science Press, 1984. 271 p.
  22. 22. Лихтенберг А., Либерман М. Регулярная и стохастическая динамика. М.: Мир, 1984. 528 с.
  23. 23. Lichtenberg A., Lieberman M. Regular and stochastic dynamics. New York: Springer, 2010. 692 p.
  24. 24. Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 415 с.
  25. 25. Zubarev D. Nonequilibrium statistical thermodynamics. New York: Consultants Bureau, 1974. 489 p.
  26. 26. Зубарев Д.Н., Морозов В.Г., Репке Г. Статистическая механика неравновесных процессов. М.: Физматлит, 2002. 431 с.
  27. 27. Zubarev D., Morozov V., Repke G. Statistical mechanics of nonequilibrium processes. V. 1. Wiley, 1996. 375 p.
  28. 28. Климонтович Ю.Л. Статистическая теория открытых систем. М.: ТОО Янус, 1995. 567 с.
  29. 29. Klimontovich Yu.L. Statistical theory of open systems // Fundamental Theories of Physics, 1994, vol. 67. https://doi.org/10.1007/978-94-011-0175-2
  30. 30. Кадомцев Б.Б. Динамика и информация. М.: УФН, 1999. 397 с.
  31. 31. Kadomtsev B.B. Dynamics and information. Moscow: Physics-Uspekhi, 1999. 397 p. (In Russian).
  32. 32. Чепмен С., Каулинг Е. Математическая теория неоднородных газов. М.: Изд-во иностр. лит., 1960. 510 с.
  33. 33. Chapman S. Cowling T.G. The Mathematical theory of non-uniform gases. Cambridge: University Press. 1990. 423 p.
  34. 34. Burnett D. The distribution of molecular velocities in a slightly non-uniform gas // Proc. London Math. Soc. 1935. V. 39. № 6. P. 385–430.
  35. 35. Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: University Press, 2017. 640 p.
  36. 36. Chandler D. Introduction to modern statistical mechanics. Oxford: Univ. Press, 1987. 286 p.
  37. 37. Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика. Новосибирск: НГАСУ, 2005. 468 с.
  38. 38. Rudyak V. Ya. Statistical aerohydromechanics of homogeneous and heterogeneous media. Vol. 2, Hydromechanics. Novosibirsk: NSUACE, 2005. 468 p.
  39. 39. Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems // J. Phys. Soc. Japan. 1957. V. 12. № 6. P. 570–584. https://doi.org/10.1143/JPSJ.12.570
  40. 40. Kubo R., Yokota M., Nakajima S. Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances // J. Phys. Soc. Japan. 1957. V. 12. № 11. P. 1203–1226. https://doi.org/10.1143/JPSJ.12.1203
  41. 41. Green H.S. Theories of transport in fluids // J. Math. Phys. 1961. V. 2. № 2. P. 344–348. https://doi.org/10.1063/1.1703720
  42. 42. Lebowitz J.L. Hamiltonian flows and rigorous results in non-equilibrium statistical mechanics // Statistical mechanics, new concepts, new problems, new applications. Proc. of I.U.P.A.P. Conf. on Statistical Mech. Chicago: University Press, 1971. P. 41–66.
  43. 43. Резибуа П., Леннер де М. Классическая кинетическая теория жидкостей и газов. М.: Мир, 1980. 423 с.
  44. 44. Résibois P., De Leener M. Classical kinetic theory of fluids. N.Y., London: Wiley-Interscience, 1977. 412 p. Ernst M.H. Formal theory of transport coefficients to general order in the density // Physica. 1966. V. 32. № 2. P. 209–243. https://doi.org/10.1016/0031-8914 (66)90055-3
  45. 45. Хонькин А.Д. Уравнения для пространственно-временных и временных корреляционных функций и доказательство эквивалентности результатов методов Чепмена–Энскога и временных корреляционных функций // ТМФ. 1970. Т. 5. № 1. С. 125–135.
  46. 46. Khon'kin A.D. Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman-Enskog and time correlation methods // Theoretical Math. Phys., 1970, vol. 5, pp. 1029–1037.
  47. 47. Thompson A.P., Aktulga H.M., Berger R. et al. LAMMPS — A flexible simulation tool for particle-based materials modelling at the atomic, meso, and continuum scales // Comp. Phys. Comm. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
  48. 48. Lide D.R. (ed.) Handbook of chemistry and physics. CRC, 2010. 2760 p.
  49. 49. Bird R.B., Armstrong R.C., Hassager O. Dynamics of polymeric liquids. V.1. Fluid mechanics. N.-Y.: Wiley, 1987. 649 p.
  50. 50. Tanner R.I., Walters K. Rheology: an historical perspective. Amsterdam: Elsevier, 1998. 255 p.
  51. 51. Chhabra R.P., Richardson J.F. Non-Newtonian flow and applied rheology. Oxford: Butterworth-Heinemann, 2008. 536 p. https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7
  52. 52. Mewis J., Wagner N.J. Colloidal suspension rheology. Cambridge: University Press, 2011. 393 p. https://doi.org/10.1017/CBO9780511977978
  53. 53. Maxwell J.C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1881. 528 p. https://doi.org/treatiseonelectr01maxwrich
  54. 54. Einstein A. Eine neue Bestimmung der Moleküldimensionen // Ann. Phys. 1906. V. 324. P. 289–306. https://doi.org/10.1002/andp.19063240204
  55. 55. Minakov A.V., Rudyak V.Yа., Pryazhnikov M.I. Rheological behavior of water and ethylene glycol based nanofluids with oxide nanoparticles // Colloids& Surfaces A: Physicochem.&Engin. Aspects. 2018. V. 554. P. 279–285. https://doi.org/10.1016/j.colsurfa.2018.06.051
  56. 56. Rudyak V.Ya. Thermophysical characteristics of nanofluids and transport process mechanisms // J. Nanofluids. 2019. V. 8. P. 1–16. https://doi.org/10.1166/jon.2019.1561
  57. 57. Rudyak V., Minakov A., Pryazhnikov M. Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluid // J. Molecular Liquids. 2021. V. 329. P. 115517. https://doi.org/10.1016/j.molliq.2021.115517
  58. 58. Rudyak V.Ya., Dashapilov G.R., Minakov A.V. et al. Comparative characteristics of viscosity and rheology of nanofluids with multi-walled and single-walled carbon nanotubes // Diamond Related Mat. 2023. V. 132. P. 109616. https://doi.org/10.1016/j.diamond.2022.109616
  59. 59. Rudyak V.Ya., Minakov A.V., Pryazhnikov M.I. Rheology and thermal conductivity of nanofluids with carbon nanotubes // Adv. Material Sci Research. 2022. V. 66. P. 1–92.
  60. 60. Рудяк В.Я., Краснолуцкий С.Л. Диффузия наночастиц в разреженном газе // ЖТФ. 2002. Т. 72. № 7. С.13–20.
  61. 61. Rudyak V.Ya., Krasnolutsky S.L. Diffusion of nanoparticles in a rarefied gas // Tech. Phys., 2002, vol. 47, pp. 807–813.
  62. 62. Рудяк В.Я., Краснолуцкий С.Л., Иванов Д.А. О потенциале взаимодействия наночастиц // Доклады Академии наук. 2012. Т. 442. № 1. С. 54–56.
  63. 63. Rudyak V.Ya., Krasnolutskii S.L., Ivanov D.A. The interaction potential of nanoparticles // Doklady Physics, 2012, vol. 57, pp. 33–35.
  64. 64. Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. V. 112. № 14. P. 6472–6486. https://doi.org/10.1063/1.481208
  65. 65. Batchelor G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles // J. Fluid Mech. 1977. V. 83. № 01. P. 97–117. https://doi.org/10.1017/S0022112077001062
  66. 66. Minakov A.V., Rudyak V.Ya., Pryazhnikov M.I. Systematic experimental study of the viscosity of nanofluids // Heat Transfer Eng. 2020. V. 42. № 10. P. 1–17. https://doi.org/10.1080/01457632.2020.1766250
  67. 67. Монтролл Е.В. О статистической механике процессов переноса // Термодинамика необратимых процессов. М.: ИЛ, 1962. С. 233–283.
  68. 68. Montroll E.V. On the statistical mechanics of transfer processes // Thermodynamics of irreversible processes. M.: IL, 1962. pp. 233–283.
  69. 69. Lattinger J.M. Theory of thermal transport coefficients // Phys. Rev. A. 1964. V. 135. № 6. P. 1505–1514.
  70. 70. Рудяк В.Я., Белкин А.А., Иванов Д.А. и др. Моделирование процессов переноса на основе метода молекулярной динамики. Коэффициент самодиффузии // ТВТ. 2008. Т. 46. № 1. С. 35–44.
  71. 71. Rudyak V.Y., Belkin A.A., Ivanov D.A., et al. The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient // High Temp., 2008, vol. 46, pp. 30–39.
  72. 72. Rudyak V. Diffusion of nanoparticles in gases and liquids // Handbook of Nanoparticles, 2015. P. 1–21. https://doi.org/10.1007/978-3-319-13188-7_54-1
  73. 73. Belkin A., Rudyak V., Krasnolutskii S. Molecular dynamics simulation of carbon nanotubes diffusion in water // Mol. Simulation. 2022. V. 48. № 9. P. 752–759. https://doi.org/10.1080/08927022.2022.2053119
  74. 74. Ikeshoji T., Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface // Mol. Phys. 1994. V. 81. № 2. P. 51–261. https://doi.org/10.1080/00268979400100171
  75. 75. Evans D.J., Morris G.P. Statistical mechanics of nonequilibrium liquids. Canberra: Australian National University, 2007. 296 p. https://doi.org/10.1016/C2013-0-10633-2
  76. 76. Muller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity // J. Chem. Phys. 1997. V. 106. № 14. P. 6082–6085. https://doi.org/10.1063/1.473271
  77. 77. Jabbari F., Rajabpour A., Saedodin S. Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies // Chem. Eng. Sci. 2017. V. 174. P. 67–81. https://doi.org/10.1016/j.ces.2017.08.034
  78. 78. Rudyak V.Yа., Pryazhnikov M.I., Minakov A.V. et al. Comparison of thermal conductivity of nanofluids with single-walled and multi-walled carbon nanotubes // Diamond Related Mat. 2023. V. 139. P. 110376.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library