- PII
- S3034575825050046-1
- DOI
- 10.7868/S3034575825050046
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 5
- Pages
- 752-764
- Abstract
- The hydrodynamic stability of the flow with S-shaped spanwise velocity profiles simulating an incompressible flow in three-dimensional boundary layers is analyzed in a wide range of Reynolds numbers. The existence of an instability different from the known crossflow vortices and Tollmien-Schlichting waves is confirmed. The boundaries of the instabilities are estimated in terms of the wave vector angle.
- Keywords
- пограничный слой ламинарно-турбулентный переход стреловидное крыло гидродинамическая неустойчивость
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 13
References
- 1. Дородницын А.А., Лойцянский Л.Г. К теории перехода ламинарного слоя в турбулентный // ПММ. 1945. Т. 9. № 4. С. 269–284. (In Russian)
- 2. Dorodnitsyn A.А., Loitsianskii L.G. On the theory of laminar-turbulent layer transition // Prikl. Mat. Mekh., 1945, vol. 9, no. 4, pp. 269–284. (In Russian)
- 3. Saric W.S., Reed H.L., White E.B. Stability and transition of three-dimensional boundary layers // Annu. Rev. Fluid Mech. 2003. V. 35. P. 413–440. https://doi.org/10.1146/annurev.fluid.35.101101.161045
- 4. Krimmelbein N., Krumbein A. Automatic transition prediction for three-dimensional configurations with focus on industrial application // J. Aircr. 2011. V. 48. № 6. P. 1878–1887.
- 5. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 712 с.
- 6. Schlichting H., Gersten K. Boundary-layer theory. Berlin, Heidelberg: Springer-Verlag, 2017. 805 p. https://doi.org/10.1007/978-3-662-52919-5
- 7. Mack L.M. On the stability of the boundary layer on a transonic swept wing: Reston, Virigina: AIAA Paper № 79-0264, 1979. 16 p.
- 8. Wassermann P., Kloker M. Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover // J. Fluid Mech. 2005. V. 530. P. 265–293. https://doi.org/10.1017/S0022112005003708
- 9. Gregory N., Stuart J.T., Walker W.S. On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk // Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 1955. V. 248. № 943. P. 155–199.
- 10. Лутовинов В.М. Пример течения в пограничном слое с двумя областями неустойчивости // Уч. Зап. ЦАГИ. 1973. Т. 4. № 6. С. 88–93. (In Russian)
- 11. Lutovinov V.М. Example of flow in the boundary layer with two regions of instability // Acad. Notes TsAGI, 1973, vol. 4, no. 6, pp. 88–93. (In Russian)
- 12. Бойко А.В., Демиденко Н.В. Использование двухпараметрических профилей скорости для трехмерных пограничных слоев // ПМТФ. 2023. № 6. С. 144–154.
- 13. Boiko A.V., Demidenko N.V. Using two-parameter velocity profiles for three-dimensional boundary layers // JAMTP, 2023, vol. 64, no. 6, pp. 1068–1077. https://doi.org/10.1134/S0021894423060172
- 14. Gaster M. A two-parameter family of laminar boundary layer profiles on swept wings: Reston, Virigina: AIAA Paper № 2008-4335, 2008. 6 p.
- 15. Monkewitz P.A. The role of absolute and convective instability in predicting the behavior of fluid systems // Eur. J. Mech. — BFluids. 1990. V. 9. № 5. P. 395–413.
- 16. Гапонов С.А., Смородский Б.В. Линейная устойчивость трехмерных пограничных слоев // ПМТФ. 2008. Т. 49. № 2. С. 3–14.
- 17. Gaponov S.A., Smorodskii B.V. Linear stability of three-dimensional boundary layers // JAMTP, 2008, vol. 49, no. 2, pp. 157-166. https://doi.org/10.1007/s10808-008-0023-5
- 18. Cooke J.C. The boundary layer of a class of infinite yawed cylinders // Math. Proc. Camb. Philos. Soc. 1950. V. 46. № 4. P. 645–648. https://doi.org/10.1017/S0305004100026220
- 19. Hartree D.R. On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer // Math. Proc. Camb. Philos. Soc. 1937. V. 33. № 2. P. 223–239. https://doi.org/10.1017/S0305004100019575
- 20. Shampine L.F., Reichelt M.W., Kierzenka J. Solving boundary value problems for ordinary differential equations in Matlab with bvp4c // Mathworks. 2000.
- 21. Trefethen L.N. Spectral methods in MATLAB. Philadelphia, PA: SIAM, 2000. 163 p.
- 22. Линь Ц.-Ц. Теория гидродинамической устойчивости. М.: Издательство иностранной литературы, 1958. 195 с.
- 23. Lin C. C. The theory of hydrodynamic stability // J. of Fluid Mech., 1956, vol. 1, no. 3, pp. 349–352. https://doi.org/10.1017/S0022112056210202
- 24. Foote J.R., Lin C.C. Some recent investigations in the theory of hydrodynamic stability // Q. Appl. Math. 1950. V. 8. № 3. P. 265–280. https://doi.org/10.1090/qam/38189
- 25. Barston E.M. On the linear stability of inviscid incompressible plane parallel flow // J. Fluid Mech. 1991. V. 233. № 3. P. 157–163. https://doi.org/10.1017/S0022112091000435
- 26. Dovgal A.V., Kozlov V.V., Michalke A. Laminar boundary layer separation: Instability and associated phenomena // Prog. Aerosp. Sci. 1994. V. 30. № 1. P. 61–94. https://doi.org/10.1016/0376-0421 (94)90003-5