RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

A Conservative Numerical Method for Solving the Cahn-Hilliard Equation

PII
S3034575825010101-1
DOI
10.7868/S3034575825010101
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 1
Pages
136-148
Abstract
This paper presents a conservative numerical algorithm for solving the Cahn-Hillard equation. A method for linearizing the Cahn-Hillard equation is proposed, and a numerical scheme is constructed based on the control volume method. The implementation of the proposed numerical algorithm is described in detail. The conservativeness of the proposed discrete scheme is verified by numerical simulation. Numerical experiments were carried out.
Keywords
уравнение Кана-Хилларда модель фазового поля начально-краевая задача разностные схемы метод контрольного объема
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
47

References

  1. 1. Нигматулин Р.И. Основы механики гетерогенных сред. М.: Наука, 1978. 336 с.
  2. 2. Gueyffier D., Li J., Nadim A. et al. Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows // J. Comput. Phys. 1999. V. 152. P. 423-456.
  3. 3. Glimm J., Grove J.W., Li X.L. et al. Three-dimensional front tracking // SIAM J. Sci. Comput. 1998. V. 19. P. 703-727.
  4. 4. Anderson D.M., McFadden G.B., Wheeler A.A. Diffuse-interface methods in fluid mechanics // Ann. Rev. Fluid Mech. 1998. V. 30. P. 139-165.
  5. 5. Du Q., Feng X.-B. The phase field method for geometric moving interfaces and their numerical approximations // in: Handbook of Numerical Analysis. Vol. 21. Elsevier, 2020. P. 425-508.
  6. 6. Badalassi V.E., Ceniceros H.D., Banerjee S. Computation of multiphase systems with phase field models // J. Comput. Phys. 2003. V. 190. P. 371-397.
  7. 7. Cahn J.W., Hilliard J.E. Free energy of a nonuniform system. I. Interfacial free energy // J. of Chem. Phys. 1958. V. 28(2). P. 258-267.
  8. 8. Miranville A. The Cahn-Hilliard equation: recent advances and applications // SIAM. 2019.
  9. 9. Lovrić A., Dettmer W., Perić D. Low order finite element methods for the Navier-Stokes-Cahn-Hilliard equations // arXiv preprint. 2019. arXiv:1911.06718
  10. 10. Choo S.M., Chung S.K. Conservative nonlinear difference scheme for the Cahn-Hilliard equation // Comput. Math. Appl. 1998. V. 36. P. 31-39.
  11. 11. Choo S.M., Chung S.K., Kim K.I. Conservative nonlinear difference scheme for the Cahn-Hilliard equation // II. Comput. Math. Appl. 2000. V. 39. P. 229-243.
  12. 12. Elliott C.M. The Cahn-Hilliard model for the kinetics of phase separation // Math. Models for Phase Change Problems. 1989. P. 35-73.
  13. 13. Eyre D.J. An unconditionally stable one-step scheme for gradient systems // MRS Proc. 1998.
  14. 14. Патанкар С.В. Численные методы решения задач теплообмена и динамики жидкости. М.: МЭИ, 1984. 145 с.
  15. 15. Dhaouadi F., Dumbser M., Gavrilyuk S. A first-order hyperbolic reformulation of the Cahn-Hilliard equation // arXiv preprint. 2024. arXiv:2408.03862
  16. 16. Li Y., Jeong D., Shin J., Kim J. A conservative numerical method for the Cahn-Hilliard equation with Dirichlet boundary conditions in complex domains // Comput.&Math. with Appl. 2013. V. 65 (1). P. 102-115.
  17. 17. Лифшиц И.М., Слезов В.В. Кинетика осаждения из пересыщенных твердых растворов // ж. Физики и химии твердых тел. 1961. Т. 19 (1-2). С. 35-50.
  18. 18. Naraigh O.L., Gloster A. A large-scale statistical study of the coarsening rate in models of Ostwald-Ripening // arXiv preprint. 2019. arXiv: 1911.03386.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library