RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

High-Performance Numerical Method for Searching the Effective Thermal Conductivity of Media with Inhomogeneous Macrostructure

PII
S3034575825010093-1
DOI
10.7868/S3034575825010093
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 1
Pages
128-135
Abstract
When solving engineering problems, it is often necessary to know the physical properties of porous media with complex internal structure. In this paper we propose a technique for numerical modeling of heat conduction of this kind of bodies including non-conducting circular inclusions. This technique allows to calculate temperature fields and heat fluxes, as well as other parameters necessary for applications. One of such parameters demanded by practice is the effective thermal conductivity, which depends on the volume content of thermally insulated pores and their mutual location. The basis of the above studies is the indirect boundary element method proposed in this paper, based on pre-calculated analytical solutions, on which the decomposition is performed. In order to verify the developed methods, a comparison with the results of other authors is given in the paper. It showed a fairly good agreement.
Keywords
пористые среды эффективный коэффициент теплопроводности методы граничных элементов
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
44

References

  1. 1. Braginsky L., Shklover V., Witz G., Bossmann H.-P. Thermal conductivity of porous structures // Phys. Rev. B. 2007. V. 75(9).
  2. 2. Smith D., Alzina A., Bourret J. et al. Thermal conductivity of porous materials // J. of Mater. Res. 2013. V. 28(17).
  3. 3. Kachanov M., Tsukrov I., Shafiro B. Effective moduli of solids with cavities of various shapes // Appl. Mech. Rev. 1994. V. 47.
  4. 4. Kiradjiev K.B., Halvorsen S.A., Van Gorder R.A., Howison S.D. Maxwell-type models for the effective thermal conductivity of a porous material with radiative transfer in the voids // Int. J. of Thermal Sci. 2019. V. 145.
  5. 5. Klemens P.G. Thermal conductivity of inhomogeneous materials // Int. J. Thermophys. 1989. V. 10. P. 1213-1219.
  6. 6. Sevostianov I., Kachanov M. Elastic and conductive properties of plasma-sprayed ceramic coatings in relation to their microstructure: An overview // J. of Thermal Spray Technol. 2009. V. 18. P. 822-834.
  7. 7. Shafiro B., Kachanov M. Anisotropic effective conductivity of materials with nonrandomly oriented inclusions of diverse ellipsoidal shapes // J. Appl. Phys. 2000. V. 87(12). P. 8561-8569.
  8. 8. Wang Z., Kulkarni A., Deshpande S., Nakamura T., Herman H. Effects of pores and interfaces on effective properties of plasma sprayed zirconia coatings // Acta Mater. 2003. V. 51. Iss. 18. P. 5319-5334.
  9. 9. Звягин А.В., Удалов А.С. Метод разрывных смещений высокого порядка точности в механике трещин // Вестн. Моск. ун-та, Сер. 1. Матем. Мех. 2020. № 6. С. 34-39.
  10. 10. Zvyagin A.V., Udalov A.S., Shamina A.A. Boundary element method for investigating large systems of cracks using the Williams asymptotic series // Acta Astron. 2022. V. 194. P. 480-487.
  11. 11. Zvyagin A.V., Udalov A.S., Shamina A.A. Numerical modeling of heat conduction in bodies with cracks // Acta Astron. 2023. V. 214. P. 196-201.
  12. 12. Florence A.L., Goodier J.N. Thermal stresses due to disturbance of uniform heat flow by an insulated ovaloid hole // ASME. J. Appl. Mech. 1960. V. 27(4). P. 635-639.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library