- PII
- S3034575825010089-1
- DOI
- 10.7868/S3034575825010089
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 1
- Pages
- 106-127
- Abstract
- In the approximation of the Foppl-von Karman model, the problem of deformation of a circular plate coupled to a massive substrate along a contour coinciding with the boundary of a hole in the substrate under the action of a transverse load is solved. Boundary conditions of two types were considered: rigid and generalized elastic embedding. The solution is obtained in two ways: by decomposing into power series the transverse displacements and longitudinal forces represented in a cylindrical coordinate system, as well as by numerical integration of the Foppl-von Karman equations, with successive refinement of boundary conditions, similar to the “shooting method”. Expressions for the displacement components of a circular plate are obtained. The role played by the compliance of the substrate in changing the profile shape of the circular plate, the acting longitudinal forces and bending moments has been revealed. A comparison with other solutions has been made. The fields of applicability of the methods are investigated.
- Keywords
- тонкая пластина уравнения Феппля-фон Кармана граничные условия типа обобщенной упругой заделки
- Date of publication
- 03.02.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 46
References
- 1. Nanofabrication: Nanolithography Techniques and Their Applications / ed. by De Teresa J.M. Bristol, England: IOP Pub., 2020. 450 p. https://doi.org/10.1088/978-0-7503-2608-7
- 2. Салащенко Н.Н., Чхало Н.И., Дюжев Н.А. Безмасочная рентгеновская литография на основе МОЭМС и микрофокусных рентгеновских трубок // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2018. № 10. С. 10-20. https://doi.org/10.1134/S0207352818100165
- 3. Silverman J.P. Challenges and progress in X-ray lithography // J. of Vacuum Sci.&Technol. B. 1998. V. 16. Iss. 6. P. 31-37. https://doi.org/10.1116/1.590452
- 4. Vladimirsky Y., Bourdillon A. et al. Demagnification in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction // J. of Physics D: Appl. Phys. 1999. V. 32. Iss. 22. P. 114-118. https://doi.org/10.1088/0022-3727/32/22/102
- 5. Cotterell B., Chen Z. Buckling and cracking of thin film on compliant substrates under compression // Int. J. of Fracture. 2000. V. 104. Iss. 2. P. 169-179. https://doi.org/10.1023/A:1007628800620
- 6. Yu H.-H., Hutchinson J.W. Influence of substrate compliance on buckling delamination of thin films // Int. J. of Fracture. 2002. V. 113. P. 39-55. https://doi.org/10.1023/A:1013790232359
- 7. Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. of the Mech.&Phys. of Solids. 2004. V. 52. Iss. 1. P. 193-214. https://doi.org/10.1016/S0022-5096 (03)00070-X
- 8. Andrews M., Massabo R., Cox B. Elastic interaction of multiple delaminations in plates subject to cylindrical bending // Int. J. of Solids&Struct. 2006. V. 43. Iss. 5. P. 855-886. https://doi.org/10.1016/j.ijsolstr.2005.04.025
- 9. Andrews M., Massabo R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Engng. Fracture Mech. 2007. V. 74. Iss. 17. P. 2700-2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
- 10. Ustinov K.B. On shear separation of a thin strip from the half-plane // Mech. of Solids. 2014. V. 49. Iss. 6. P. 713-724. https://doi.org/10.3103/S0025654414060132
- 11. Ustinov K.B. On separation of a layer from the half-plane: elastic fixation conditions for a plate equivalent to the layer // Mech. of Solids. 2015. V. 50. Iss. 1. P. 62-80. https://doi.org/10.3103/S0025654415010070
- 12. Begley M.R., Hutchinson J.W. The Mechanics and Reliability of Films, Multilayers and Coatings. Cambridge: Univ. Press, 2017. 288 p. https://doi.org/10.1017/9781316443606
- 13. Thouless M.D. Shear forces, root rotations, phase angles and delamination of layered materials // Engng. Fracture Mech. 2018. V. 191. P. 153-167. https://doi.org/10.1016/j.engfracmech.2018.01.033
- 14. Barbieri L., Massabo R., Berggreen C. The effects of shear and near tip deformations on interface fracture of symmetric sandwich beams // Engng. Fracture Mech. 2018. V. 201. P. 298-321. https://doi.org/10.1016/j.engfracmech.2018.06.039
- 15. Massabo R., Ustinov K.B., Barbieri L., Berggreen C. Fracture mechanics solutions for interfacial cracks between compressible thin layers and substrates // Coatings. 2019. V. 9. Iss. 3. P. 152. https://doi.org/10.3390/coatings9030152
- 16. Ustinov K.B. On semi-infinite interface crack in bi-material elastic layer // Europ. J. of Mech. A/Solids. 2019. V. 75. P. 56-69. https://doi.org/10.1016/j.euromechsol.2019.01.013
- 17. Monetto I., Massabo R. An analytical beam model for the evaluation of crack tip root rotations and displacements in orthotropic specimens // Frattura ed Integrita Strutt. 2020. V. 14. № 53. P. 372-393. https://doi.org/10.3221/IGF-ESIS.53.29
- 18. Ustinov K., Massabo R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. of Solids&Struct. 2022. V. 248. P. 111600. http://doi.org/10.1016/j.ijsolstr.2022.111600
- 19. Ustinov K.B. On influence of substrate compliance on delamination and buckling of coatings // Engng. Failure Anal. 2015. V. 47. P. 338-344. https://doi.org/10.1016/j.engfailanal.2013.09.022
- 20. Устинов К.Б., Гандилян Д.В. О граничных условиях для тонкой круглой пластины, сопряженной с массивным телом // Вестн. Самар. ун-та. Естеств. сер. 2024. Т. 30. № 1. С. 50-63. https://doi.org/10.18287/2541-7525-2024-30-1-50-63
- 21. Gorman D.J. Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method // J. of Sound&Vibr. 1997. V. 207. P. 335-350.
- 22. Du J.T., Li W.L., Jiu G.J., Yang T.J., Liu Z.G. An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges // J. of Sound&Vibr. 2009. V. 306. P. 908-927.
- 23. Zhang H., Li W.L. Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints // J. of Sound&Vibr. 2009. V. 326. P. 221-231.
- 24. Dal H., Morque O.K. Vibrations of elastically restrained rectangular plates // Sci. Res.&Essays. 2011. V. 6 (31). P. 6811-6816.
- 25. Zhang H., Shi D., Wang Q. An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions // Int. J. of Mech. Sci. 2017. V. 121. P. 1-20.
- 26. Gorman D.J. Free vibration and buckling of in-plane loaded plates with rotational edge support // J. of Sound&Vibr. 2000. V. 225. P. 755-773.
- 27. Miletić I., Miletić M. The buckling analysis of a rectangular plate elastically clamped along the longitudinal edges // Appl. Engng. Lett. 2016. V. 1. № 1. P. 24-28.
- 28. Miletić I., Miletić M., Milojević S., Ulewicz R., Nikolić R. The buckling analysis of an elastically clamped rectangular plate // Mobility&Vehicle Mech. 2020. V. 48. № 1. P. 37-46.
- 29. Chen J., Jin G., Liu Z. Free vibration analysis if circular cylindrical shell with non-uniform elastic boundary conditions // Int. J. of Mech. Sci. 2013. V. 74. P. 120-132.
- 30. Karakosyan R.M., Stepanyan S.P. Non-classical problem of bend of an orthotropic annular plate of variable thickness with an elastically clamped support // Proc. of the Yerevan State Univ. 2017. V. 51. № 2. P. 168-176.
- 31. Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Наука, 1966. 636 с.
- 32. Way S. Bending of circular plates with large deflection // Trans. ASME. 1934. V. 56. P. 627-633.
- 33. Лычев С.А., Дигилов А.В., Пивоваров Н.А. Изгиб кругового диска. От цилиндра к ультратонкой мембране // Вестн. Самар. ун-та. Естеств. сер. 2023. Т. 29. № 4. С. 77-105. https://doi.org/10.18287/2541-7525-2023-29-4-77-105 https://www.elibrary.ru/blerei
- 34. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 590 с.
- 35. Lychev S., Digilov A., Demin G., Gusev E., Kushnarev I., Djuzhev N., Bespalov V. Deformations of single-crystal silicon circular plate: Theory and experiment // Symmetry MDPI. 2024. V. 16(2). P. 137-163. https://doi.org/10.3390/sym16020137
- 36. Lychev S., Digilov A. Incompatible deformations in hyperelastic plates on influence of substrate compliance on delamination and buckling of coatings // Math. MDPI. 2024. V. 12(4). P. 596-616. https://doi.org/10.1016/j.engfailanal.2013.09.022
- 37. Лычев С.А. Несовместные деформации гибких пластин // Уч. зап. Казан. ун-та. Сер. Физ.-мат. наук. 2023. Т. 165. № 4. С. 361-388. https://doi.org/10.26907/2541-7746.2023.4.361-388
- 38. Дедкова А.А., Глаголев П.Ю., Гусев Е.Э., Дюжев Н.А., Киреев В.Ю., Лычев С.А., Товарнов Д.А. Особенности деформирования круглых тонкопленочных мембран и экспериментальное определение их эффективных // ЖТФ. 2021. Т. 91. № 10. С. 1454-1465. https://doi.org/10.21883/JTF.2021.10.51357.121-21