RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Deformation of a Thin Circular Plate Fixed along the Contour to the Substrate

PII
S3034575825010089-1
DOI
10.7868/S3034575825010089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 1
Pages
106-127
Abstract
In the approximation of the Foppl-von Karman model, the problem of deformation of a circular plate coupled to a massive substrate along a contour coinciding with the boundary of a hole in the substrate under the action of a transverse load is solved. Boundary conditions of two types were considered: rigid and generalized elastic embedding. The solution is obtained in two ways: by decomposing into power series the transverse displacements and longitudinal forces represented in a cylindrical coordinate system, as well as by numerical integration of the Foppl-von Karman equations, with successive refinement of boundary conditions, similar to the “shooting method”. Expressions for the displacement components of a circular plate are obtained. The role played by the compliance of the substrate in changing the profile shape of the circular plate, the acting longitudinal forces and bending moments has been revealed. A comparison with other solutions has been made. The fields of applicability of the methods are investigated.
Keywords
тонкая пластина уравнения Феппля-фон Кармана граничные условия типа обобщенной упругой заделки
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
46

References

  1. 1. Nanofabrication: Nanolithography Techniques and Their Applications / ed. by De Teresa J.M. Bristol, England: IOP Pub., 2020. 450 p. https://doi.org/10.1088/978-0-7503-2608-7
  2. 2. Салащенко Н.Н., Чхало Н.И., Дюжев Н.А. Безмасочная рентгеновская литография на основе МОЭМС и микрофокусных рентгеновских трубок // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2018. № 10. С. 10-20. https://doi.org/10.1134/S0207352818100165
  3. 3. Silverman J.P. Challenges and progress in X-ray lithography // J. of Vacuum Sci.&Technol. B. 1998. V. 16. Iss. 6. P. 31-37. https://doi.org/10.1116/1.590452
  4. 4. Vladimirsky Y., Bourdillon A. et al. Demagnification in proximity X-ray lithography and extensibility to 25 nm by optimizing Fresnel diffraction // J. of Physics D: Appl. Phys. 1999. V. 32. Iss. 22. P. 114-118. https://doi.org/10.1088/0022-3727/32/22/102
  5. 5. Cotterell B., Chen Z. Buckling and cracking of thin film on compliant substrates under compression // Int. J. of Fracture. 2000. V. 104. Iss. 2. P. 169-179. https://doi.org/10.1023/A:1007628800620
  6. 6. Yu H.-H., Hutchinson J.W. Influence of substrate compliance on buckling delamination of thin films // Int. J. of Fracture. 2002. V. 113. P. 39-55. https://doi.org/10.1023/A:1013790232359
  7. 7. Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. of the Mech.&Phys. of Solids. 2004. V. 52. Iss. 1. P. 193-214. https://doi.org/10.1016/S0022-5096 (03)00070-X
  8. 8. Andrews M., Massabo R., Cox B. Elastic interaction of multiple delaminations in plates subject to cylindrical bending // Int. J. of Solids&Struct. 2006. V. 43. Iss. 5. P. 855-886. https://doi.org/10.1016/j.ijsolstr.2005.04.025
  9. 9. Andrews M., Massabo R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Engng. Fracture Mech. 2007. V. 74. Iss. 17. P. 2700-2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
  10. 10. Ustinov K.B. On shear separation of a thin strip from the half-plane // Mech. of Solids. 2014. V. 49. Iss. 6. P. 713-724. https://doi.org/10.3103/S0025654414060132
  11. 11. Ustinov K.B. On separation of a layer from the half-plane: elastic fixation conditions for a plate equivalent to the layer // Mech. of Solids. 2015. V. 50. Iss. 1. P. 62-80. https://doi.org/10.3103/S0025654415010070
  12. 12. Begley M.R., Hutchinson J.W. The Mechanics and Reliability of Films, Multilayers and Coatings. Cambridge: Univ. Press, 2017. 288 p. https://doi.org/10.1017/9781316443606
  13. 13. Thouless M.D. Shear forces, root rotations, phase angles and delamination of layered materials // Engng. Fracture Mech. 2018. V. 191. P. 153-167. https://doi.org/10.1016/j.engfracmech.2018.01.033
  14. 14. Barbieri L., Massabo R., Berggreen C. The effects of shear and near tip deformations on interface fracture of symmetric sandwich beams // Engng. Fracture Mech. 2018. V. 201. P. 298-321. https://doi.org/10.1016/j.engfracmech.2018.06.039
  15. 15. Massabo R., Ustinov K.B., Barbieri L., Berggreen C. Fracture mechanics solutions for interfacial cracks between compressible thin layers and substrates // Coatings. 2019. V. 9. Iss. 3. P. 152. https://doi.org/10.3390/coatings9030152
  16. 16. Ustinov K.B. On semi-infinite interface crack in bi-material elastic layer // Europ. J. of Mech. A/Solids. 2019. V. 75. P. 56-69. https://doi.org/10.1016/j.euromechsol.2019.01.013
  17. 17. Monetto I., Massabo R. An analytical beam model for the evaluation of crack tip root rotations and displacements in orthotropic specimens // Frattura ed Integrita Strutt. 2020. V. 14. № 53. P. 372-393. https://doi.org/10.3221/IGF-ESIS.53.29
  18. 18. Ustinov K., Massabo R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. of Solids&Struct. 2022. V. 248. P. 111600. http://doi.org/10.1016/j.ijsolstr.2022.111600
  19. 19. Ustinov K.B. On influence of substrate compliance on delamination and buckling of coatings // Engng. Failure Anal. 2015. V. 47. P. 338-344. https://doi.org/10.1016/j.engfailanal.2013.09.022
  20. 20. Устинов К.Б., Гандилян Д.В. О граничных условиях для тонкой круглой пластины, сопряженной с массивным телом // Вестн. Самар. ун-та. Естеств. сер. 2024. Т. 30. № 1. С. 50-63. https://doi.org/10.18287/2541-7525-2024-30-1-50-63
  21. 21. Gorman D.J. Free vibration analysis of Mindlin plates with uniform elastic edge support by the superposition method // J. of Sound&Vibr. 1997. V. 207. P. 335-350.
  22. 22. Du J.T., Li W.L., Jiu G.J., Yang T.J., Liu Z.G. An analytical method for the in-plane vibration analysis of rectangular plates with elastically restrained edges // J. of Sound&Vibr. 2009. V. 306. P. 908-927.
  23. 23. Zhang H., Li W.L. Vibrations of rectangular plates with arbitrary non-uniform elastic edge restraints // J. of Sound&Vibr. 2009. V. 326. P. 221-231.
  24. 24. Dal H., Morque O.K. Vibrations of elastically restrained rectangular plates // Sci. Res.&Essays. 2011. V. 6 (31). P. 6811-6816.
  25. 25. Zhang H., Shi D., Wang Q. An improved Fourier series solution for free vibration analysis of the moderately thick laminated composite rectangular plate with non-uniform boundary conditions // Int. J. of Mech. Sci. 2017. V. 121. P. 1-20.
  26. 26. Gorman D.J. Free vibration and buckling of in-plane loaded plates with rotational edge support // J. of Sound&Vibr. 2000. V. 225. P. 755-773.
  27. 27. Miletić I., Miletić M. The buckling analysis of a rectangular plate elastically clamped along the longitudinal edges // Appl. Engng. Lett. 2016. V. 1. № 1. P. 24-28.
  28. 28. Miletić I., Miletić M., Milojević S., Ulewicz R., Nikolić R. The buckling analysis of an elastically clamped rectangular plate // Mobility&Vehicle Mech. 2020. V. 48. № 1. P. 37-46.
  29. 29. Chen J., Jin G., Liu Z. Free vibration analysis if circular cylindrical shell with non-uniform elastic boundary conditions // Int. J. of Mech. Sci. 2013. V. 74. P. 120-132.
  30. 30. Karakosyan R.M., Stepanyan S.P. Non-classical problem of bend of an orthotropic annular plate of variable thickness with an elastically clamped support // Proc. of the Yerevan State Univ. 2017. V. 51. № 2. P. 168-176.
  31. 31. Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: Наука, 1966. 636 с.
  32. 32. Way S. Bending of circular plates with large deflection // Trans. ASME. 1934. V. 56. P. 627-633.
  33. 33. Лычев С.А., Дигилов А.В., Пивоваров Н.А. Изгиб кругового диска. От цилиндра к ультратонкой мембране // Вестн. Самар. ун-та. Естеств. сер. 2023. Т. 29. № 4. С. 77-105. https://doi.org/10.18287/2541-7525-2023-29-4-77-105 https://www.elibrary.ru/blerei
  34. 34. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 590 с.
  35. 35. Lychev S., Digilov A., Demin G., Gusev E., Kushnarev I., Djuzhev N., Bespalov V. Deformations of single-crystal silicon circular plate: Theory and experiment // Symmetry MDPI. 2024. V. 16(2). P. 137-163. https://doi.org/10.3390/sym16020137
  36. 36. Lychev S., Digilov A. Incompatible deformations in hyperelastic plates on influence of substrate compliance on delamination and buckling of coatings // Math. MDPI. 2024. V. 12(4). P. 596-616. https://doi.org/10.1016/j.engfailanal.2013.09.022
  37. 37. Лычев С.А. Несовместные деформации гибких пластин // Уч. зап. Казан. ун-та. Сер. Физ.-мат. наук. 2023. Т. 165. № 4. С. 361-388. https://doi.org/10.26907/2541-7746.2023.4.361-388
  38. 38. Дедкова А.А., Глаголев П.Ю., Гусев Е.Э., Дюжев Н.А., Киреев В.Ю., Лычев С.А., Товарнов Д.А. Особенности деформирования круглых тонкопленочных мембран и экспериментальное определение их эффективных // ЖТФ. 2021. Т. 91. № 10. С. 1454-1465. https://doi.org/10.21883/JTF.2021.10.51357.121-21
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library