Используя функцию напряжений Эйри для плоско-деформированного состояния сплошной среды, было получено представление для сингулярностей классического поля упругих напряжений. Для неевклидовой модели сплошной среды показано, что структура поля внутренних напряжений плоско-деформированного состояния складывается из классического поля упругих напряжений и неклассического поля напряжений, определяемого через функцию несовместности деформаций. Требование отсутствия особенностей в поле внутренних напряжений позволило скомпенсировать сингулярность в решении теории упругости для нулевой гармоники за счет выбора сингулярности неклассического поля напряжений.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation