В работе исследуются условия совместности системы уравнений, описывающие неоднородные винтовые течения идеальной несжимаемой жидкости. Рассматриваемый класс течений восходит к работам И.С. Громеки и Э. Бельтрами, которые независимо друг от друга обнаружили стационарные решения уравнений Эйлера, удовлетворяющие условию коллинеарности вектора скорости и вихревого вектора. Их результаты впоследствии легли в основу теории винтовых течений, привлекая внимание к особым классам решений уравнений гидродинамики. Исследуемая система включает уравнения Эйлера, дополненные дифференциальными связями, накладывающими ограничения на взаимосвязь скорости и ее вихря. В частности, Громека показал, что при постоянной функции связи система становится инволютивной. Однако случай переменной функции существенно сложнее и требует детального анализа. Выполнен групповой анализ замкнутой нелинейной системы уравнений, связывающей компоненты вектора скорости и функцию. Построена оптимальная система подгрупп шестимерной алгебры Ли, допускаемой указанной системой. Найдены ее инвариантные решения относительно однопараметрических подгрупп, описываемые квазилинейными уравнениями с двумя независимыми переменными.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation