- PII
- 10.31857/S0032823524050031-1
- DOI
- 10.31857/S0032823524050031
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 5
- Pages
- 679-691
- Abstract
- In the linear approximation, the propagation of a periodic disturbance along the free surface of a viscous stratified fluid in a uniform gravitational field is considered, taking into account the action of surface tension. Complete solutions of the linearized system of fundamental equations of the mechanics of heterogeneous fluids, which determine the regular wave and singular ligament components, are obtained. The fine spatial structure of the fields of next physical variables: fluid velocity, momentum, density and density gradient are calculated.
- Keywords
- периодические движения свободная поверхность вязкость стратификация тонкая структура распределение давления распределение плотности
- Date of publication
- 01.05.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 27
References
- 1. Stokes G.G. On the theory of oscillatory waves // Trans. Cam. Philos. Soc. 1847. V. 8. P. 441–455.
- 2. Monismith S.G., Cowen E.A., Nepf H.M. et al. Laboratory observations of mean flows under surface gravity waves // J. Fluid Mech. 2007. V. 573. P. 131–147. https://doi.org/10.1017/jfm.2019.891
- 3. Plueddemann A.J.; Weller R.A. Structure and evolution of the oceanic surface boundary layer during the Surface Waves Processes Program // J. of Marine Syst. 1999. V. 21. № 1–4. P. 85–102. https://doi.org/10.1016/s0924-7963 (99)00007-x
- 4. Yan S., Zou Z., You Z. Eulerian description of wave-induced Stokes drift effect on tracer transport // J. of Marine Sci.&Engng. 2022. V. 10. № 2. P. 253.
- 5. Subbaraya S., Breitenmoser A. Molchanov A. et al. Circling the seas: Design of Lagrangian drifters for ocean monitoring // IEEE Robotics & Autom. Mag. 2016. V. 23. № 4. P. 42–53. https://doi.org/10.1109/MRA.2016.2535154
- 6. Bosi S. Broström G., Roquet F. The role of Stokes drift in the dispersal of North Atlantic surface marine debris // Front. Mar. Sci., Sec. Marine Pollution. 2021. V. 8. https://doi.org/10.3389/fmars.2021.697430
- 7. Higgins C., Vanneste J., van den Bremer T.S. Unsteady Ekman–Stokes dynamics: Implications for surface wave-induced drift of floating marine litter // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089189. https://doi.org/10.1029/2020GL089189
- 8. Pizzo N., Melville W.K. Deike L. Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface // J. Phys. Ocean. 2019. V. 49. P. 983–993. https://doi.org/10.1175/JPO-D-18-0227.1
- 9. Gerstner F.J. Theorie der Wellen. Abhandlunger der Königlichen Böhmischen Geselschaft der Wissenschaften, Prague. 1802; Repr. in: Annalen der Physik. 1809. V. 32. № 8. P. 412–445.
- 10. Абрашкин А.А., Пелиновский Е.Н. О связи дрейфа Стокса и волны Герстнера // УФН. 2018. Т. 188. № 3. С. 329–334. https://doi.org/10.3367/UFNr.2017.03.038089
- 11. Longuet-Higgins M.S. Mass transport in water waves // Phil. Trans. of the Roy. Soc. of London. A. Math.&Phys. Sci. 1953. V. 245. № 903. P. 535–581. https://doi.org/10.1098/rsta.1953.0006
- 12. Longuet-Higgins M.S., Stewart R.W. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’ // J. of Fluid Mech. 1962. V. 13. № 4. P. 481–504. https://doi.org/10.1017/S0022112062000877
- 13. Van Den Bremer T.S., Whittaker C., Calvert R. et al. Experimental study of particle trajectories below deep-water surface gravity wave groups // J. of Fluid Mech. 2019. V. 879. P. 168–186. https://doi.org/10.1017/jfm.2019.584
- 14. Ильичев А.Т., Савин А.С., Шашков А.Ю. Движение частиц в поле нелинейных волновых пакетов в слое жидкости под ледяным покровом // ТМФ. 2024. Т. 218. № 3. С. 586–600. https://doi.org/10.4213/tmf10585
- 15. You Z.J., Wilkinson D.L., Nielsen P. Near bed net drift under waves // in: Proc. of the 10th Australasian Conf. on Coastal and Ocean Engineering, Auckland, New Zealand. 1991. Dec. 2–6. P. 183–186.
- 16. David H. Stokes drift in equatorial water waves, and wave–current interactions // Deep Sea Res. Pt. II: Topical Studies in Oceanogr. 2019. V. 160. P. 41–47. https://doi.org/10.1016/j.dsr2.2018.08.003
- 17. Bühler O. Waves and Mean Flows. Cambridge: Univ. Press, 2014. 374 p. https://doi.org/10.1017/CBO9781107478701
- 18. McWilliams J.C., Restrepo J.M., Lane E.M. An asymptotic theory for the interaction of waves and currents in coastal waters. // J. of Fluid Mech. 2004. V. 511. P. 135–178. https://doi.org/10.1017/S0022112004009358
- 19. Leibovich S. The form and dynamics of Langmuir circulations // Annual Rev. of Fluid Mech. 1983. V. 15. № 1. P. 391–427. https://doi.org/10.1146/annurev.fl.15.010183.002135;
- 20. Kinsman, B. Wind Waves: Their Generation and Propagation on the Ocean’s Surface. Prentice Hall, 1965.
- 21. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука. 1986. 736 с.
- 22. Кочин Н.Е., Кибель И.А., Розе Т.В. Теоретическая гидромеханика. Ч. 1. Л.;М.: ОГИЗ. ГИТТЛ, 1948. 535 с.
- 23. Лэмб Г. Гидродинамика. М.;Л.: ГИТТЛ, 1949. 928 с.
- 24. Федоров К.Н. Тонкая термохалинная структура вод океана. Л.: Гидрометеоиздат.
- 25. Rayleigh (Lord). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density // Proc. London Math. Soc. 1882. V. s1–14. Iss. 1. P. 170–177. https://doi.org/10.1112/plms/s1-14.1.170
- 26. Лайтхилл Дж. Волны в жидкостях. M.: Мир, 1981. 598 с.
- 27. Xu F., Li F., Zhang Y. The symmetry of steady stratified periodic gravity water waves // Monatshefte für Mathematik. 2024. V. 203. № 1. P. 247–266. https://doi.org/10.1007/s00605-023-01904-4
- 28. Байдулов В.Г. О задаче определения положения источника внутренних волн // ПММ. 2023. Т. 87. №. 1 С. 36–44. https://doi.org/10.31857/S0032823523010046
- 29. Князьков Д.Ю., Байдулов В.Г., Савин А.С. и др. Прямые и обратные задачи динамики поверхностного волнения, вызванного обтеканием подводного препятствия // ПММ. 2023. Т. 87. № 3. С. 442–453. https://doi.org/10.31857/S0032823523030074
- 30. Wang C.A., Zhang H., Zhu H.L. Numerical predictions of internal waves and surface thermal signatures by underwater vehicles in density-stratified water using OpenFOAM // Ocean Engng. 2023. Т. 272. С. 113847. https://doi.org/10.1016/j.oceaneng.2023.113847
- 31. More R.V., Ardekani A.M. Motion in stratified fluids // Annual Rev. of Fluid Mech. 2023. V. 55. P. 157–192. https://doi.org/10.1146/annurev-fluid-120720-011132
- 32. Dore B.D. Mass transport in layered fluid systems // J. of Fluid Mech. 1970. V. 40. № 1. P. 113–126. https://doi.org/10.1017/S0022112070000071
- 33. Liu A.K., Davis S.H. Viscous attenuation of mean drift in water waves // J. of Fluid Mech. 1977. V. 81. № 1. P. 63–84. https://doi.org/10.1017/S0022112077001918
- 34. Robertson S., Rousseaux G. Viscous dissipation of surface waves and its relevance to analogue gravity experiments, 2018. http://arxiv.org/abs/1706.05255v3
- 35. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. № 4. P. 286. https://doi.org/10.3390/axioms10040286
- 36. Monismith S.G. Stokes drift: theory and experiments // J. of Fluid Mech. 2020. V. 884. P. F1. https://doi.org/10.1017/jfm.2019.891
- 37. Chashechkin Y.D., Ochirov A.A. Periodic flows in a viscous stratified fluid in a homogeneous gravitational field // Mathematics. 2023. V. 11. № 21. P. 4443. https://doi.org/10.3390/math11214443
- 38. Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean. Sci. 2018. V. 14. P. 471–502. https://doi.org/10.5194/os-14-471-2018
- 39. Найфэ А. Введение в методы возмущений М.: Мир, 1984. 535 с
- 40. Седов Л.И. Механика сплошной среды. Т. 1. М.: Наука, 1970. 536 с.
- 41. Баринов В.А. Распространение волн по свободной поверхности вязкой жидкости // Вестн. С.-Петербургского ун-та. Прикл. матем. Информ. Процессы управл. 2010. № 2. С. 18–31.