RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

The Fine Structure of the Density Field in Two-Dimensional Periodic Flows on the Surface of a Viscous Stratified Liquid

PII
10.31857/S0032823524050031-1
DOI
10.31857/S0032823524050031
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 5
Pages
679-691
Abstract
In the linear approximation, the propagation of a periodic disturbance along the free surface of a viscous stratified fluid in a uniform gravitational field is considered, taking into account the action of surface tension. Complete solutions of the linearized system of fundamental equations of the mechanics of heterogeneous fluids, which determine the regular wave and singular ligament components, are obtained. The fine spatial structure of the fields of next physical variables: fluid velocity, momentum, density and density gradient are calculated.
Keywords
периодические движения свободная поверхность вязкость стратификация тонкая структура распределение давления распределение плотности
Date of publication
01.05.2024
Year of publication
2024
Number of purchasers
0
Views
27

References

  1. 1. Stokes G.G. On the theory of oscillatory waves // Trans. Cam. Philos. Soc. 1847. V. 8. P. 441–455.
  2. 2. Monismith S.G., Cowen E.A., Nepf H.M. et al. Laboratory observations of mean flows under surface gravity waves // J. Fluid Mech. 2007. V. 573. P. 131–147. https://doi.org/10.1017/jfm.2019.891
  3. 3. Plueddemann A.J.; Weller R.A. Structure and evolution of the oceanic surface boundary layer during the Surface Waves Processes Program // J. of Marine Syst. 1999. V. 21. № 1–4. P. 85–102. https://doi.org/10.1016/s0924-7963 (99)00007-x
  4. 4. Yan S., Zou Z., You Z. Eulerian description of wave-induced Stokes drift effect on tracer transport // J. of Marine Sci.&Engng. 2022. V. 10. № 2. P. 253.
  5. 5. Subbaraya S., Breitenmoser A. Molchanov A. et al. Circling the seas: Design of Lagrangian drifters for ocean monitoring // IEEE Robotics & Autom. Mag. 2016. V. 23. № 4. P. 42–53. https://doi.org/10.1109/MRA.2016.2535154
  6. 6. Bosi S. Broström G., Roquet F. The role of Stokes drift in the dispersal of North Atlantic surface marine debris // Front. Mar. Sci., Sec. Marine Pollution. 2021. V. 8. https://doi.org/10.3389/fmars.2021.697430
  7. 7. Higgins C., Vanneste J., van den Bremer T.S. Unsteady Ekman–Stokes dynamics: Implications for surface wave-induced drift of floating marine litter // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089189. https://doi.org/10.1029/2020GL089189
  8. 8. Pizzo N., Melville W.K. Deike L. Lagrangian transport by nonbreaking and breaking deep-water waves at the ocean surface // J. Phys. Ocean. 2019. V. 49. P. 983–993. https://doi.org/10.1175/JPO-D-18-0227.1
  9. 9. Gerstner F.J. Theorie der Wellen. Abhandlunger der Königlichen Böhmischen Geselschaft der Wissenschaften, Prague. 1802; Repr. in: Annalen der Physik. 1809. V. 32. № 8. P. 412–445.
  10. 10. Абрашкин А.А., Пелиновский Е.Н. О связи дрейфа Стокса и волны Герстнера // УФН. 2018. Т. 188. № 3. С. 329–334. https://doi.org/10.3367/UFNr.2017.03.038089
  11. 11. Longuet-Higgins M.S. Mass transport in water waves // Phil. Trans. of the Roy. Soc. of London. A. Math.&Phys. Sci. 1953. V. 245. № 903. P. 535–581. https://doi.org/10.1098/rsta.1953.0006
  12. 12. Longuet-Higgins M.S., Stewart R.W. Radiation stress and mass transport in gravity waves, with application to ‘surf beats’ // J. of Fluid Mech. 1962. V. 13. № 4. P. 481–504. https://doi.org/10.1017/S0022112062000877
  13. 13. Van Den Bremer T.S., Whittaker C., Calvert R. et al. Experimental study of particle trajectories below deep-water surface gravity wave groups // J. of Fluid Mech. 2019. V. 879. P. 168–186. https://doi.org/10.1017/jfm.2019.584
  14. 14. Ильичев А.Т., Савин А.С., Шашков А.Ю. Движение частиц в поле нелинейных волновых пакетов в слое жидкости под ледяным покровом // ТМФ. 2024. Т. 218. № 3. С. 586–600. https://doi.org/10.4213/tmf10585
  15. 15. You Z.J., Wilkinson D.L., Nielsen P. Near bed net drift under waves // in: Proc. of the 10th Australasian Conf. on Coastal and Ocean Engineering, Auckland, New Zealand. 1991. Dec. 2–6. P. 183–186.
  16. 16. David H. Stokes drift in equatorial water waves, and wave–current interactions // Deep Sea Res. Pt. II: Topical Studies in Oceanogr. 2019. V. 160. P. 41–47. https://doi.org/10.1016/j.dsr2.2018.08.003
  17. 17. Bühler O. Waves and Mean Flows. Cambridge: Univ. Press, 2014. 374 p. https://doi.org/10.1017/CBO9781107478701
  18. 18. McWilliams J.C., Restrepo J.M., Lane E.M. An asymptotic theory for the interaction of waves and currents in coastal waters. // J. of Fluid Mech. 2004. V. 511. P. 135–178. https://doi.org/10.1017/S0022112004009358
  19. 19. Leibovich S. The form and dynamics of Langmuir circulations // Annual Rev. of Fluid Mech. 1983. V. 15. № 1. P. 391–427. https://doi.org/10.1146/annurev.fl.15.010183.002135;
  20. 20. Kinsman, B. Wind Waves: Their Generation and Propagation on the Ocean’s Surface. Prentice Hall, 1965.
  21. 21. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука. 1986. 736 с.
  22. 22. Кочин Н.Е., Кибель И.А., Розе Т.В. Теоретическая гидромеханика. Ч. 1. Л.;М.: ОГИЗ. ГИТТЛ, 1948. 535 с.
  23. 23. Лэмб Г. Гидродинамика. М.;Л.: ГИТТЛ, 1949. 928 с.
  24. 24. Федоров К.Н. Тонкая термохалинная структура вод океана. Л.: Гидрометеоиздат.
  25. 25. Rayleigh (Lord). Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density // Proc. London Math. Soc. 1882. V. s1–14. Iss. 1. P. 170–177. https://doi.org/10.1112/plms/s1-14.1.170
  26. 26. Лайтхилл Дж. Волны в жидкостях. M.: Мир, 1981. 598 с.
  27. 27. Xu F., Li F., Zhang Y. The symmetry of steady stratified periodic gravity water waves // Monatshefte für Mathematik. 2024. V. 203. № 1. P. 247–266. https://doi.org/10.1007/s00605-023-01904-4
  28. 28. Байдулов В.Г. О задаче определения положения источника внутренних волн // ПММ. 2023. Т. 87. №. 1 С. 36–44. https://doi.org/10.31857/S0032823523010046
  29. 29. Князьков Д.Ю., Байдулов В.Г., Савин А.С. и др. Прямые и обратные задачи динамики поверхностного волнения, вызванного обтеканием подводного препятствия // ПММ. 2023. Т. 87. № 3. С. 442–453. https://doi.org/10.31857/S0032823523030074
  30. 30. Wang C.A., Zhang H., Zhu H.L. Numerical predictions of internal waves and surface thermal signatures by underwater vehicles in density-stratified water using OpenFOAM // Ocean Engng. 2023. Т. 272. С. 113847. https://doi.org/10.1016/j.oceaneng.2023.113847
  31. 31. More R.V., Ardekani A.M. Motion in stratified fluids // Annual Rev. of Fluid Mech. 2023. V. 55. P. 157–192. https://doi.org/10.1146/annurev-fluid-120720-011132
  32. 32. Dore B.D. Mass transport in layered fluid systems // J. of Fluid Mech. 1970. V. 40. № 1. P. 113–126. https://doi.org/10.1017/S0022112070000071
  33. 33. Liu A.K., Davis S.H. Viscous attenuation of mean drift in water waves // J. of Fluid Mech. 1977. V. 81. № 1. P. 63–84. https://doi.org/10.1017/S0022112077001918
  34. 34. Robertson S., Rousseaux G. Viscous dissipation of surface waves and its relevance to analogue gravity experiments, 2018. http://arxiv.org/abs/1706.05255v3
  35. 35. Chashechkin Y.D. Foundations of engineering mathematics applied for fluid flows // Axioms. 2021. V. 10. № 4. P. 286. https://doi.org/10.3390/axioms10040286
  36. 36. Monismith S.G. Stokes drift: theory and experiments // J. of Fluid Mech. 2020. V. 884. P. F1. https://doi.org/10.1017/jfm.2019.891
  37. 37. Chashechkin Y.D., Ochirov A.A. Periodic flows in a viscous stratified fluid in a homogeneous gravitational field // Mathematics. 2023. V. 11. № 21. P. 4443. https://doi.org/10.3390/math11214443
  38. 38. Feistel R. Thermodynamic properties of seawater, ice and humid air: TEOS-10, before and beyond // Ocean. Sci. 2018. V. 14. P. 471–502. https://doi.org/10.5194/os-14-471-2018
  39. 39. Найфэ А. Введение в методы возмущений М.: Мир, 1984. 535 с
  40. 40. Седов Л.И. Механика сплошной среды. Т. 1. М.: Наука, 1970. 536 с.
  41. 41. Баринов В.А. Распространение волн по свободной поверхности вязкой жидкости // Вестн. С.-Петербургского ун-та. Прикл. матем. Информ. Процессы управл. 2010. № 2. С. 18–31.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library