RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Damping of longitudinal vibrations of an elastic rod by a piezoelectric element

PII
10.31857/S0032823524040022-1
DOI
10.31857/S0032823524040022
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 4
Pages
525-539
Abstract
Possible damping of longitudinal vibrations of a thin homogeneous elastic rod under the influence of a normal force in the cross section is studied. This time-varying force, which can be excited, for example, by using piezoelectric elements, is uniformly distributed along the length on a given segment of the cantilevered rod and is equal to zero outside it. Those placements of the ends of the segment are presented in which the excited force does not affect the amplitude of certain modes. The minimum time in which the oscillations of all other modes can be damped is found, and based on the Fourier method, the corresponding law of the damping force is obtained in the form of a series. A generalized formulation of the boundary value problem on moving the rod during this time to the zero terminal state is given, for which an algorithm for exact solution is proposed in the case of rational relations on the geometric parameters. Unknown functions of the rod state are sought in the form of a linear combination of the traveling wave and normal force functions, which are determined from a linear system of algebraic equations following from boundary relations and continuity conditions. The solutions obtained in series by the Fourier method and in the form of d’Alembert traveling waves are compared.
Keywords
упругий стержень пьезоэлектрические силы метод Фурье гашение колебаний бегущие волны
Date of publication
01.04.2024
Year of publication
2024
Number of purchasers
0
Views
30

References

  1. 1. Бутковский А.Г. Теория оптимального управления системами с распределенными параметрами. М.: Наука, 1965. 474 с.
  2. 2. Lions J.L. Optimal Control of Systems Governed by Partial Differential Equations. New York: Springer, 1971. 400 p.
  3. 3. Черноусько Ф.Л., Ананьевский И.М., Решмин С.А. Методы управления нелинейными механическими системами. М.: Физматлит, 2006. 328 с.
  4. 4. Chen G. Control and stabilization for the wave equation in a bounded domain. II // SIAM J. Control Optim. 1981. V. 19. № 1. P. 114–122.
  5. 5. Романов И.В., Шамаев А.С. О задаче граничного управления для системы, описываемой двумерным волновым уравнением // Изв. РАН. ТиСУ. 2019. № 1. С. 109–116.
  6. 6. Гавриков А.А., Костин Г.В. Изгибные колебания упругого стержня, управляемого пьезоэлектрическими силами // ПММ. 2023. Т. 87. № 5. С. 801–819.
  7. 7. IEEE Standard on Piezoelectricity // ANSI/IEEE Std 176-1987. 1988. https://doi.org/10.1109/IEEESTD.1988.79638
  8. 8. Kucuk I., Sadek I., Yilmaz Y. Optimal control of a distributed parameter system with applications to beam vibrations using piezoelectric actuators // J. Franklin Inst. 2014. V. 351. № 2. P. 656–666.
  9. 9. Kostin G.V., Saurin V.V. Dynamics of Solid Structures. Methods Using Integrodifferential Relations. Berlin: De Gruyter, 2018.
  10. 10. Kostin G., Gavrikov A. Controllability and optimal control design for an elastic rod actuated by piezoelements // IFAC-PapersOnLine. 2022. V. 55. № 16. P. 350–355. https://doi.org/10.1016/j.ifacol.2022.09.049
  11. 11. Гавриков А.А., Костин Г.В. Оптимизация продольных движений упругого стержня с помощью периодически распределенных пьезоэлектрических сил // Изв. РАН. ТиСУ. 2023. № 6. С. 93–109.
  12. 12. Kostin G., Gavrikov A. Modeling and optimal control of longitudinal motions for an elastic rod with distributed forces // ArXiv. 2022. arXiv:2206.06139 5. P. 1–11. https://doi.org/10.48550/arXiv.2206.06139
  13. 13. Gavrikov A., Kostin G. Optimal LQR control for longitudinal vibrations of an elastic rod actuated by distributed and boundary forces // Mech.&Machine Sci. V. 125. 2023. P. 285–295. https://doi.org/10.1007/978-3-031-15758-5_28
  14. 14. Ho L.F. Exact controllability of the one-dimensional wave equation with locally distributed control // SIAM J. Control Optim. 1990. V. 28. № 3. P. 733–748.
  15. 15. Bruant I., Coffignal G., Lene F., Verge M. A methodology for determination of piezoelectric actuator and sensor location on beam structures // J. Sound&Vibr. 2001. V. 243. № 5. P. 861–882. https://doi.org/10.1006/jsvi.2000.3448
  16. 16. Gupta V., Sharma M., Thakur N. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review // J. Intell. Mater. Syst.&Struct. 2010. V. 21. № 12. P. 1227–1243. https://doi.org/10.1177/1045389X10381659
  17. 17. Botta F., Rossi A., Belfiore N.P. A novel method to fully suppress single and bi-modal excitations due to the support vibration by means of piezoelectric actuators // J. Sound&Vibr. 2021. V. 510. № 13. P. 116260. https://doi.org/10.1016/j.jsv.2021.116260
  18. 18. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. 735 с.
  19. 19. Михлин С.Г. Курс математической физики. М.: Наука, 1968. 576 с.
  20. 20. Иосида К. Функциональный анализ. М.: Мир, 1968. 624 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library