RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Integral Representations of Solution in the Problem on Skew Incidence of a Surface Wave on the Straight Shoreline Water Wedge

PII
10.31857/S0032823524030055-1
DOI
10.31857/S0032823524030055
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 3
Pages
406-421
Abstract
In the linear approximation of the surface gravitational waves of small amplitude a classical model problem about the incursion of a surface wave under some angle on the shoreline is solved. The problem is formulated for the harmonic potential of velocity of the fluid in the 3D water wedge with the Robin-Steklov boundary condition on the free surface and with the no-flow condition along the normal on the bed of the water domain. Some critical comments about a known in the literature solution having a “non-physical” singularity of the logarithmic type on the coastal line are given. The asymptotics with respect to distance from the shoreline of the obtained solution, bounded on the edge, is constructed. The reflection coefficient of the wave reflected from the shoreline is calculated.
Keywords
поверхностная волна интегральные представления функциональные уравнения асимптотика
Date of publication
01.03.2024
Year of publication
2024
Number of purchasers
0
Views
27

References

  1. 1. Shrira V.I. et al. Can edge waves be generated by wind? // J. of Fluid Mech. 2022. V. 934. P. A16–136.
  2. 2. Ehrenmark U.T. Oblique wave incidence on a plane beach: The classical problem revisited // J. of Fluid Mech. 1998. V. 368. P. 291–319.
  3. 3. Isaacson E. Water waves over a sloping bottom // Commun. Pure Appl. Maths. 1950. V. 3. P. 11–31.
  4. 4. Kuznetsov N., Mazya V., Vainberg B. Linear Water Waves. Cambridge: Univ. Press, 2002. 513 p.
  5. 5. Ursell F. Edge waves on a sloping beach // Proc. R. Soc. Lond. Ser. A. 1952. V. 214. P. 79–97.
  6. 6. Лялинов М.А. Комментарий о собственных функциях и собственных числах оператора Лапласа в угле с краевыми условиями Робэна // Зап. науч. сем. Санкт-Петербургского отд. математического института им. В.А. Стеклова РАН. 2019. Т. 483. №49. C. 116–127.
  7. 7. Khalile M., Pankrashkin K. Eigenvalues of Robin Laplacians in infinite sectors // Math. Nachrichten. 2018. V. 291. №5–6. P. 928–965.
  8. 8. Lyalinov M.A. Eigenoscillations in an angular domain and spectral properties of functional equations // Europ. J. of Appl. Math. 2021. V. 33. P. 538–559.
  9. 9. Лялинов М.А. О собственных функциях существенного спектра модельной задачи для оператора Шрёдингера с сингулярным потенциалом // Матем. сб. 2023. Т. 214(10). C. 3–29.
  10. 10. Babich V.M., Lyalinov M.A., Grikurov V.E. Diffraction Theory: The Sommerfeld–Malyuzhinets Technique. Oxford: Alpha Sci. Int., 2008. 215 p.
  11. 11. Малюжинец Г.Д. Возбуждение, отражение и излучение поверхностных волн от клина с произвольными поверхностными импедансами // Докл. АН СССР. 1985. Т. 3. С. 752–55.
  12. 12. Gradshteyn I.S., Ryzhik M.I. Table of Integrals. Series, and Products. New York: Acad. Press, 2007. 1108 p.
  13. 13. Lyalinov M.A. Functional difference equations and and their link with perturbations of the Mehler operator // Rus. J. of Math. Phys. 2022. V. 29. №3. P. 379–397.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library