RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Problem of Three-Point Bending of an Elastic Beam from Porous Metal

PII
10.31857/S0032823524020043-1
DOI
10.31857/S0032823524020043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 2
Pages
217-227
Abstract
Using numerical methods, we construct a solution to a physically and geometrically nonlinear problem of three-point bending of an elastic beam, made of porous metal, with rectangular cross-section. Unlike the classical version of the problem for a homogeneous beam, the heterogeneity over the cross-section due to material compaction because of the collapse of pores, which occurs in the compression zone at sufficiently large deflections, is taken into account. To describe the elastic state of a porous metal, the stress – strain diagram of a bimodular medium is used. The results of computations of strong bending of a beam, made of the low-porosity aluminum foam, are presented. These results demonstrate the difference between the obtained solution and similar solutions for beams, made of homogeneous porous and compacted material.
Keywords
металлическая пена упругость пористость трехточечный изгиб
Date of publication
01.02.2024
Year of publication
2024
Number of purchasers
0
Views
26

References

  1. 1. Gibson L. J. Mechanical behavior of metallic foams // Annu. Rev. Mater. Sci. 2000. V. 30. № 1. P. 191–227.
  2. 2. Banhart J. Manufacturing routes for metallic foams // JOM. 2000. V. 52. № 12. P. 22–27.
  3. 3. Ashby M.F. Plastic deformation of cellular materials // Encyclopedia of Materials: Science and Technology. P. 7068–7071. Oxford: Pergamon Press, 2001.
  4. 4. Леушин И.О., Грачев А. Н., Назаров В. Н., Горохов П. А. Пеноалюминий – перспективный материал для производства литых изделий ответственного назначения // Теория и технол. металл. пр-ва. 2020. № 4 (35). С. 35–3٨.
  5. 5. Прохорчук Е.А., Леонов А. А., Власова К. А. и др. Перспектива применения пеноалюминия для изделий авиакосмической техники (обзор) // Труды ВИАМ. 2021. № 12 (106). С. 21–30.
  6. 6. Schaedler T.A., Jacobsen A. J., Torrents A. et al. Ultralight metallic microlattices // Science. 2011. V. 334. № 6058. P. 962–965.
  7. 7. Аннин Б. Д. Механика деформируемого твердого тела: Избр. тр. Новосибирск: СО РАН, 2022. 2٨٨ с.
  8. 8. Garcia-Avila M., Portanova M., Rabiei A. Ballistic performance of composite metal foams // Compos. Struct. 2015. V. 125. P. 202–211.
  9. 9. Czekanski A., Elbestawi M.A., Meguid S.A. On the FE modeling of closed-cell aluminum foam // Int. J. Mech. Mater. Des. 2005. V. 2. № 1–2. P. 23–34.
  10. 10. Völlmecke C., Todt M., Yiatros S. Buckling and postbuckling of architectured materials: A review of methods for lattice structures and metal foams // Compos. Adv. Mater. 2021. V. 30. P. 1–12.
  11. 11. Садовский В.М., Садовская О.В. Анализ деформации пористой среды с учетом схлопывания пор // ПМТФ. 2016. Т. 57. № 5. С. 53–65.
  12. 12. Садовский В.М., Садовская О.В., Лукьянов А.А. Радиальное расширение сферической и цилиндрической полостей в безграничной пористой среде // ПМТФ. 2014. Т. 55. № 4. С. 160–173.
  13. 13. Работнов Ю.Н. Механика деформируемого твердого тела. М.: Наука, 1979. 744 с.
  14. 14. Садовская О.В., Садовский В.М. Математическое моделирование в задачах механики сыпучих сред. М.: Физматлит, 2008. 368 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library