- PII
- 10.31857/S0032823524010017-1
- DOI
- 10.31857/S0032823524010017
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 1
- Pages
- 5-16
- Abstract
- The problem of stability of non-degenerate linear systems admitting a first integral in the form of a non-degenerate quadratic form is considered. New algebraic criteria for stability, as well as complete instability of such systems, have been established in the form of equality to zero of traces of products of matrices, which include an additional symmetric matrix. These conditions are closely related to the symplectic geometry of the phase space, which is determined by the matrix of the original linear system and the symmetric matrix defining the first integral. General results are applied to finding conditions for complete instability of linear gyroscopic systems.
- Keywords
- линейные системы квадратичные интегралы след симплектическая структура гамильтоновы системы нормальные формы Вильямсона степени устойчивости и неустойчивости полная неустойчивость пучки квадратичных форм гироскопические системы
- Date of publication
- 01.01.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 26
References
- 1. Козлов В.В. Линейные системы с квадратичным интегралом // ПММ. 1992. Т. 56. Вып. 6. С. 900–906.
- 2. Kozlov V.V. Linear hamiltonian systems: quadratic integrals, singular subspaces and stability // R&C Dyn. 2018. V. 23. № 1. P. 26–46.
- 3. Карапетян А.А., Козлов В.В. О степени устойчивости // Дифф. ур-я. 2005. Т. 41. № 2. С. 186–192.
- 4. John F. A note on the maximum principle for elliptic differential equations // Bull. Amer. Math. Soc. 1938. V. 44. P. 268–271.
- 5. Dines L.L. On linear combinations of quadratic forms // Bull. Amer. Math. Soc. 1943. V. 49. P. 388–393.
- 6. Uhlig F. A Reccurring theorem about pairs of quadratic forms and extensions: a survey // Linear Algebra and Its Appl. 1979. V. 25. P. 219–237.
- 7. Гантмахер Ф.Р. Теория матриц. М.: Физматлит, 2004. 560 с.
- 8. Kirillov O.N. Nonconservative Stability Problems of Modern Physics. Berlin: De Gruyter, 2013.
- 9. Майлыбаев А.А., Сейранян А.П. Многопараметрические задачи устойчивости. Теория и приложения в механике. М.: Физматлит, 2009. 399 с.