RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

On Integral Funnel of Control Systems, Changed at Several Small Time Interval

PII
10.31857/S0032823523050156-1
DOI
10.31857/S0032823523050156
Publication type
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 5
Pages
829-861
Abstract
A nonlinear control system in a finite-dimensional Euclidean space and on a finite time interval is considered, the dynamics of which changes significantly over several small sections from a given time interval. We study the degree of change in the reachable sets and integral funnels of the system under consideration when it varies in these sections. The corresponding changes are estimated in the Hausdorff metric.
Keywords
управляемая система дифференциальное включение множество достижимости интегральная воронка переменная структура вариация системы хаусдорфово расстояние
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
25

References

  1. 1. Красовский Н.Н. Управление динамической системой. М.: Наука, 1985. 520 с.
  2. 2. Куржанский А.Б. Избранные труды. М.: Изд-во МГУ, 2009. 756 с.
  3. 3. Шматков А.М. Об управлении ансамблем траекторий при наличии ограниченной помехи // Изв. РАН. ТиСУ. 1995. № 4. С. 82–87.
  4. 4. Красовский Н.Н., Субботин А.И. Позиционные дифференциальные игры. М.: Физматлит, 1974. 456 с.
  5. 5. Ушаков В.Н., Матвийчук А.Р., Паршиков Г.В. Метод построения разрешающего управления задачи о сближении, основанный на притягивании к множеству разрешимости // Тр. ИММ УрО РАН. 2013. Т. 19. № 2. С. 270–284.
  6. 6. Матвийчук А.Р., Ухоботов В.И., Ушаков А.В., Ушаков В.Н. Задача о сближении нелинейной управляемой системы на конечном промежутке времени // ПММ. 2017. Т. 81. Вып. 2. С. 165–187.
  7. 7. Ершов А.А., Ушаков В.Н. О сближении управляемой системы, содержащей неопределенный параметр // Матем. сб. 2017. Т. 208. № 9. С. 56–99.
  8. 8. Черноусько Ф.Л. Оценивание фазового состояния динамических систем: Метод эллипсоидов. М.: Наука, 1988. 319 с.
  9. 9. Черноусько Ф.Л. Оптимальные гарантированные оценки неопределенностей с помощью эллипсоидов // Изв. АН СССР. Технич. киберн. 1980. № 3. С. 3–11.
  10. 10. Черноусько Ф.Л. Оптимальные гарантированные оценки неопределенностей с помощью эллипсоидов. Ч. II // Изв. АН СССР. Технич. киберн. 1980. № 4. С. 4–11.
  11. 11. Черноусько Ф.Л. Оптимальные гарантированные оценки неопределенностей с помощью эллипсоидов. Ч. III // Изв. АН СССР. Технич. киберн. 1980. № 5. С. 5–11.
  12. 12. Kurjanskii A., Valyi I. Ellipsoidal Calculus for Estimation and Control. Systems & Control: Foundations & Applications. Basel: Birkhӓuser Basel and IIASA, 1997. 321 p.
  13. 13. Schweppe F.C. Recursive state estimation: unknown but bounded errors and system inputs // IEEE Trans. Automat. Control. 1968. V. AC-13. № 1. P. 22–28.
  14. 14. Bertsekas D.P., Rhodes J.B. Recursive state estimation for a set-membership description of uncertainty // IEEE Trans. Automat. Control. 1971. V. AC-16. № 2. P. 117–128.
  15. 15. Гусев М.И. Оценки множеств достижимости многомерных управляемых систем с нелинейными перекрестными связями // Тр. ИММ УрО РАН. 2009. Т. 15. № 4. С. 82–94.
  16. 16. Филиппова Т.Ф. Дифференциальные уравнения эллипсоидальных оценок множеств достижимости нелинейной динамической управляемой системы // Тр. ИММ УрО РАН. 2010. Т. 16. № 1. С. 223–232.
  17. 17. Черноусько Ф.Л. Оценка множеств достижимости линейных систем с неопределенной матрицей // Докл. РАН. 1996. Т. 349. № 1. С. 32–34.
  18. 18. Рокитянский Д.Я. Возмущенные линейные отображения множеств // Изв. РАН. ТиСУ. 1996. № 6. С. 110–116.
  19. 19. Костоусова Е.К. Об ограниченности и неограниченности внешних полиэдральных оценок множеств достижимости линейных дифференциальных систем // Тр. ИММ УрО РАН. 2009. Т. 15. № 4. С. 134–145.
  20. 20. Гусейнов Х.Г., Моисеев А.Н., Ушаков В.Н. Об аппроксимации областей достижимости управляемых систем // ПММ. 1998. Т. 62. № 2. С. 179–187.
  21. 21. Никольский М.С. Об аппроксимации множества достижимости дифференциального включения // Вестн. МГУ. Сер. 15. Вычисл. матем. и киберн. 1987. № 4. С. 31–34.
  22. 22. Lempio F., Veliov V.M. Discrete approximation of differential inclusions // Bayr. Math. Schriften. 1998. V. 54. P. 149–232.
  23. 23. Ананьевский И.М. Управление нелинейной колебательной системой четвертого порядка с неизвестными параметрами // Автомат. и телемех. 2001. № 3. С. 3–15.
  24. 24. Ананьевский И.М. Синтез управления линейными системами с помощью методов теории устойчивости движения // Дифференц. уравн. 2003. Т. 39. № 1. С. 3–11.
  25. 25. Поляк Б.Т., Хлебников М.В., Щербаков П.С. Управление линейными системами при внешних возмущениях: Техника линейных матричных неравенств. М.: Ленанд, 2014. 560 с.
  26. 26. Безнос А.В., Гришин А.А., Ленский А.В. и др. Управление маятником при помощи маховика. Спецпрактикум по теоретической и прикладной механике / Под ред. В.В. Александрова. М.: Изд-во МГУ, 2009. С. 170–195.
  27. 27. Горнов А.Ю., Тятюшкин А.И., Финкельштейн Е.А. Численные методы для решения терминальных задач оптимального управления // ЖВММФ. 2016. Т. 56. № 2. С. 224–237.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library