- PII
- 10.31857/S0032823523050089-1
- DOI
- 10.31857/S0032823523050089
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 87 / Issue number 5
- Pages
- 869-882
- Abstract
- In the present work a modification of the multipole decomposition method is developed, which makes it possible to relate the overpressure distribution in the near-field of a supersonic transport (SST) with a far-field distribution, which is needed for the solution of sonic boom propagation problem from SST. A generalization of the method for solving the integral equations arising from multipole decomposition is performed. An algorithm for multipole correction of near-field overpressure signatures obtained in numerical simulations has been developed and tested.
- Keywords
- звуковой удар мультипольное разложение сверхзвуковой пассажирский самолет ближнее поле дальнее поле
- Date of publication
- 01.05.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 23
References
- 1. Ландау Л.Д. Об ударных волнах на далеких расстояниях от места их возникновения // ПММ. 1945. Т. 9. № 4. С. 286–292.
- 2. Yamashita R., Wutschitz L., Nikiforakis N. A full-field simulation methodology for sonic boom modelling on adaptive Cartesian cut-cell meshes // J. Comput. Phys. 2020. V. 408. № 109271. P. 1–19.
- 3. Чернышев С.Л. Звуковой удар. М.: Наука, 2011. 351 с.
- 4. Жилин Ю.Л. О звуковом ударе // Уч. зап. ЦАГИ. 1971. Т. 2. № 3. С. 1–11.
- 5. Thomas C.L. Extrapolation of sonic boom pressure signatures by the waveform parameter method // NASA TN D-6832. 1972. 35 p.
- 6. Chernyshev S.L., Gorbovskoy V.S., Kazhan A.V., Korunov A.O. Re-entry vehicle sonic boom issue: modelling and calculation results in windy atmosphere based on the augmented Burgers equation // Acta Astron. 2022. V. 194. P. 450–460.
- 7. Maglieri D.J., Bobbitt P.J., Plotkin K.J., Shepherd K.P., Coen P.G., Richwine D.M. Sonic boom. Six decades of research // NASA-SP-2014-622. 2014. 539 p.
- 8. Page J.A., Plotkin K.J. An efficient method for incorporating computational fluid dynamics into sonic boom prediction // AIAA Paper 1991-3275. 1991.
- 9. George A. Reduction of sonic boom by azimuthal redistribution of overpressure // AIAA J. 1969. V. 7. № 2. P. 291–297.
- 10. Rallabhandi S.K., Mavris D.N. New computational procedure for incorporating computational fluid dynamics into sonic boom prediction // J. Aircraft. 2007. V. 44. № 6. P. 1964–1971.
- 11. Kanamori M., Makino Y., Ishikawa H. Extension of multipole analysis to laterally asymmetric flowfield around supersonic flight vehicle // AIAA J. 2019. V. 56. № 1. P. 191–204.
- 12. Park M.A., Morgenstern J.M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop // J. Aircraft. 2016. V. 53. № 2. P. 578–598.
- 13. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows // AIAA Paper 1992-0439. 1992.
- 14. Fedorov A.V., Soudakov V.G., Malmuth N.D. Theoretical modeling of two-body interaction in supersonic flow // AIAA J. 2010. V. 48. № 2. P. 258–266.
- 15. Жилин Ю.Л., Коваленко В.В. О связывании ближнего и дальнего полей в задаче о звуковом ударе // Уч. зап. ЦАГИ. 1998. Т. XXIX. № 3–4. С. 111–122.
- 16. Keller J.B. Geometrical acoustics. I. The theory of weak shock waves // J. Appl. Phys. 1954. V. 25. № 8. P. 938–947.