RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Application of Multipole Decomposition for Sonic Boom Propagation Problems

PII
10.31857/S0032823523050089-1
DOI
10.31857/S0032823523050089
Publication type
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 5
Pages
869-882
Abstract
In the present work a modification of the multipole decomposition method is developed, which makes it possible to relate the overpressure distribution in the near-field of a supersonic transport (SST) with a far-field distribution, which is needed for the solution of sonic boom propagation problem from SST. A generalization of the method for solving the integral equations arising from multipole decomposition is performed. An algorithm for multipole correction of near-field overpressure signatures obtained in numerical simulations has been developed and tested.
Keywords
звуковой удар мультипольное разложение сверхзвуковой пассажирский самолет ближнее поле дальнее поле
Date of publication
01.05.2023
Year of publication
2023
Number of purchasers
0
Views
23

References

  1. 1. Ландау Л.Д. Об ударных волнах на далеких расстояниях от места их возникновения // ПММ. 1945. Т. 9. № 4. С. 286–292.
  2. 2. Yamashita R., Wutschitz L., Nikiforakis N. A full-field simulation methodology for sonic boom modelling on adaptive Cartesian cut-cell meshes // J. Comput. Phys. 2020. V. 408. № 109271. P. 1–19.
  3. 3. Чернышев С.Л. Звуковой удар. М.: Наука, 2011. 351 с.
  4. 4. Жилин Ю.Л. О звуковом ударе // Уч. зап. ЦАГИ. 1971. Т. 2. № 3. С. 1–11.
  5. 5. Thomas C.L. Extrapolation of sonic boom pressure signatures by the waveform parameter method // NASA TN D-6832. 1972. 35 p.
  6. 6. Chernyshev S.L., Gorbovskoy V.S., Kazhan A.V., Korunov A.O. Re-entry vehicle sonic boom issue: modelling and calculation results in windy atmosphere based on the augmented Burgers equation // Acta Astron. 2022. V. 194. P. 450–460.
  7. 7. Maglieri D.J., Bobbitt P.J., Plotkin K.J., Shepherd K.P., Coen P.G., Richwine D.M. Sonic boom. Six decades of research // NASA-SP-2014-622. 2014. 539 p.
  8. 8. Page J.A., Plotkin K.J. An efficient method for incorporating computational fluid dynamics into sonic boom prediction // AIAA Paper 1991-3275. 1991.
  9. 9. George A. Reduction of sonic boom by azimuthal redistribution of overpressure // AIAA J. 1969. V. 7. № 2. P. 291–297.
  10. 10. Rallabhandi S.K., Mavris D.N. New computational procedure for incorporating computational fluid dynamics into sonic boom prediction // J. Aircraft. 2007. V. 44. № 6. P. 1964–1971.
  11. 11. Kanamori M., Makino Y., Ishikawa H. Extension of multipole analysis to laterally asymmetric flowfield around supersonic flight vehicle // AIAA J. 2019. V. 56. № 1. P. 191–204.
  12. 12. Park M.A., Morgenstern J.M. Summary and statistical analysis of the first AIAA sonic boom prediction workshop // J. Aircraft. 2016. V. 53. № 2. P. 578–598.
  13. 13. Spalart P.R., Allmaras S.R. A one-equation turbulence model for aerodynamic flows // AIAA Paper 1992-0439. 1992.
  14. 14. Fedorov A.V., Soudakov V.G., Malmuth N.D. Theoretical modeling of two-body interaction in supersonic flow // AIAA J. 2010. V. 48. № 2. P. 258–266.
  15. 15. Жилин Ю.Л., Коваленко В.В. О связывании ближнего и дальнего полей в задаче о звуковом ударе // Уч. зап. ЦАГИ. 1998. Т. XXIX. № 3–4. С. 111–122.
  16. 16. Keller J.B. Geometrical acoustics. I. The theory of weak shock waves // J. Appl. Phys. 1954. V. 25. № 8. P. 938–947.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library