RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

About the Lack of Controllability in Models of “Naive Mechanics”. Three Exceptional Cases

PII
10.31857/S0032823523010083-1
DOI
10.31857/S0032823523010083
Publication type
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 1
Pages
19-25
Abstract
The problem of boundary controllability is considered for a wide class of models, which can be conditionally called “naive mechanics”. It is proved that for all models of “naive mechanics”, except for the three cases, there is no controllability to rest. All these three cases are classical examples of equations, two of which require additional study of the controllability property.
Keywords
граничное управление модели вязкоупругости уравнения с памятью
Date of publication
01.01.2023
Year of publication
2023
Number of purchasers
0
Views
35

References

  1. 1. Gurtin M.E., Pipkin A.C. A general theory of heat conduction with finite wave speeds // Arch. Ration. Mech. Anal. 1968. № 31. P. 113–126.
  2. 2. Ильюшин А.А., Победря Б.Е. Основы математической теории термовязкоупругости. М.: Наука, 1970.
  3. 3. Vlasov V.V., Rautian N.A., Shamaev A.S. Spectral analysis and correct solvability of abstract integro-differential equations arising in thermophysics and acoustics // Contemp. Math. Fundam. Direct. 2011. V. 39. P. 36–65.
  4. 4. Romanov I., Shamaev A. Exact controllability of the distributed system, governed by string equation with memory // J. Dyn.&Control Syst. 2013. V. 19. № 4. P. 611–623.
  5. 5. Романов И.В., Шамаев А.С. Точное управление распределенной системой, описываемой волновым уравнением с интегральной памятью // Проблемы математического анализа. 2022. Вып. 115. С. 3–13.
  6. 6. Власов В.В., Раутиан Н.А. Спектральный анализ и представление решений интегро-дифференциальных уравнений с дробно-экспоненциальными ядрами // Тр. ММО. 2019. Т. 80. Вып. 2. С. 197–220.
  7. 7. Ivanov S., Pandolfi L. Heat equations with memory: Lack of controllability to rest // J. Math. Anal.&Appl. 2009. V. 355. № 1. P. 1–11.
  8. 8. Romanov I., Shamaev A. Non-controllability to rest of the two-dimensional distributed system governed by the integrodifferential equation // J. Optim. Theory&Appl. 2016. V. 170. № 3. P. 772–782.
  9. 9. Chaves-Silva F.W., Rosier L., Zuazua E. Null controllability of a system of viscoelasticity with a moving control. // J. de Math. Pures et Appl. 2014. V. 101. № 2. P. 198–222.
  10. 10. Chaves-Silva F.W., Zhang X., Zuazua E. Controllability of evolution equations with memory // SIAM J. Control&Optim. 2017. V. 55. № 4. https://doi.org/10.1137/151004239
  11. 11. Biccari U., Micu U. Null-controllability properties of the wave equation with a second order memory term // J. Diff. Eqns. 2019. № 267. P. 1376–1422.
  12. 12. Романов И.В. Исследование управляемости для некоторых динамических систем с распределенными параметрами, описываемых интегродифференциальными уравнениями // Изв. РАН. ТиСУ. 2022. № 2. С. 58–61.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library