- PII
- S3034575825050068-1
- DOI
- 10.7868/S3034575825050068
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 5
- Pages
- 784-796
- Abstract
- This paper studies the compatibility conditions for a system of equations describing non-uniform helical flows of an inviscid incompressible fluid. The class of flows considered traces back to the works of I. S. Gromeka and E. Beltrami, who independently discovered stationary solutions of the Euler equations satisfying the collinearity condition between the velocity and vorticity vectors. Their results laid the foundation for the theory of helical flows, identifying special solution classes of hydrodynamic equations. The system under consideration comprises the Euler equations supplemented by differential constraints that relate the velocity and vorticity vectors. Gromeka showed that if the function α is constant, the system becomes involutive. However, when α(x, y, z) is variable, the analysis becomes significantly more complex, and in general, the system is not involutive. A group analysis is performed for the resulting closed nonlinear system relating the velocity components and the function α. An optimal system of subgroups of the six-dimensional Lie algebra admitted by the system is constructed. Invariant solutions with respect to one-parameter subgroups are derived and are described by quasilinear equations with two independent variables.
- Keywords
- идеальная несжимаемая жидкость обобщенные винтовые течения инвариантные решения
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Громека И.С. Некоторые случаи движения несжимаемой жидкости. Дисс. ... д. физ.-мат. наук. Казань: 1881, 107 с.
- 2. Gromeka I.S. Some cases of incompressible fluid motion. PhD thesis, Sci. Proc. of Kazan Univ., Book III, Kazan, 1881.
- 3. Громека И.С. Избранные труды. М.: АН СССР, 1952. С. 76–148.
- 4. Gromeka I.S. Collected works. M.: USSR Acad. Sci. Publ., 1952, P. 76–148. (In Russian)
- 5. Beltrami E. Considerazioni idrodinamiche // Il Nuovo Cimento. 1889. V. 25. P. 212–222. https://doi.org/10.1007/BF02719090
- 6. Стеклов В.А. Один случай движения вязкой несжимаемой жидкости // Сообщ. Харьковского. мат. общества (2). 1896. T. 5(1–2). C. 101–124.
- 7. Steklov V.A. One case of motion of viscous incompressible fluid. Proc. of Kharkov Math. Soc. Ser. 2, 1986, vol. 5, no. 1–2, pp. 101–124. (In Russian)
- 8. Trkal V. Poznanka k hydrodynamice vazkych tekutin // Cas. pestovani mat. fis. 1919. V. 48. № 5. P. 302–311.
- 9. Bogoyavlenskij O.I. Exact solutions to the Navier-Stokes equations // C.R. Math. Rep. Acad. Sci. Canada. 2002. V. 24. № 4. P. 138–143.
- 10. Галкин В.А. Об одном классе точных решений системы Навье–Стокса для несжимаемой жидкости в шаре и сферическом слое // Журнал вычислит. матем. и математ. физики. 2023. Т. 63. № 6. С. 1000–1005.
- 11. Galkin V.A. On one class of exact solutions to the Navier-Stokes system in a ball and a spherical layer // J. Computational Math. and Math. Physics, 2023, vol. 3, no. 6, pp. 1064–1070.
- 12. Ковалёв В.П., Просвиряков Е.Ю., Сизых Г.Б. Получение примеров точных решений уравнений Навье–Стокса для винтовых течений методом суммирования скоростей // ТРУДЫ МФТИ. 2017. Т. 9. № 1. C. 71–88.
- 13. Kovalev V.P., Prosviryakov E.Yu, Sizykh G.B. Obtaining of exact solutions to the Navier-Stokes equations by the method of velocities summation // Proc. of Moscow Inst. of Physics and Technology, 2017, vol. 9, no. 1, pp. 71–88. (In Russian)
- 14. Васильев О.Ф. Основы механики винтовых и циркуляционных течений. М.–Л.: Госэнергоиздат, 1958.
- 15. Vasiliev O.F. Foundations of mechanics of helical and circulation flows. М.-L.: Gosenergoizdat Publ., 1958. (In Russian)
- 16. Ershkov S.V., Shamin R.V., Giniyatullin A.R. On a new type of non-stationary helical flows for incompressible 3D Navier-Stokes equations // J. оf King Saud Univ. — Sci. 2020. V. 32. P. 459–467. https://doi.org/10.1016/j.jksus.2018.07.006
- 17. Овсянников Л.В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978.
- 18. Ovsiannikov L.V. Group Analysis of Differential Equations. N.-Y.: Academic Press, 1982. https://doi.org/10.1016/C2013-0-07470-1
- 19. Овсянников Л.В. Программа ПОДМОДЕЛИ. Газовая динамика// ПММ. 1994. Т. 58. № 4. С. 30–55.
- 20. Ovsiannikov L.V. The “podmodeli” program. Gas dynamics // J. Appl. Math.& Mech., 1994, vol. 58, no. 4, pp. 601–627. https://doi.org/10.1016/0021-8928 (94)90137-6
- 21. Мелешко С.В. Групповая классификация и анализ совместности уравнений, описывающих винтовые течения идеальной несжимаемой жидкости // Теоретическая и математическая физика. 2025. Т. 225. № 1. С. 23–40. https://doi.org/10.4213/tmf10940 EDN: MRIUQX.
- 22. Meleshko S.V. Group classification and compatibility analysis of describing equations screw flows// Theoret.&Mathem. Physics. 2025. Т. 225. № 1. С. 23–40. https://doi.org/10.4213/tmf10940
- 23. Красносельский М.А. Топологические методы в теории нелинейных интегральных уравнений. Москва: Гостехтеориздат, 1956.
- 24. Krasnosel'skii M.A. Topological methods in the theory of nonlinear integral equations. M.: Gostekhteorizdat, 1956. (In Russian)
- 25. Ватсон Г.Н. Теория бесселевых функций. М.: Изд. иностр. литер., 1949.
- 26. Watson G.N. Theory of Bessel functions. Cambridge University Press. 1941.