- PII
- S3034575825050033-1
- DOI
- 10.7868/S3034575825050033
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 5
- Pages
- 718-751
- Abstract
- A survey is presented of numerical studies of near-wall turbulent flows conducted in different years using Direct Numerical Simulation (DNS) by representatives of three generations of L.G. Loitsyansky's students, currently working in the laboratory "Computational Hydroaeroacoustics and Turbulence" of SPbPU. Based on the experience accumulated in the course of these studies, a conclusion is drawn that despite the high computational costs required to carry out DNS, this method already today represents a powerful universal tool not only for fundamental research into turbulence, but also for solving important applied problems.
- Keywords
- прямое численное моделирование пристеночные турбулентные течения устройства для разрушения крупных вихрей сферические лунки механические вихрегенераторы осесимметричный диффузор взаимодействие скачка уплотнения с пограничным слоем обтекание гладкой выпуклости
- Date of publication
- 01.05.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 15
References
- 1. Alfredsson P.H., Örlü, R., Alfredsson R. O. Large-Eddy BreakUp Devices — a 40 Years Perspective from a Stockholm Horizon // Flow Turbulence and Combustion. 2018. V. 100. P. 877–888. https://doi.org/10.1007/s10494-018-9908-4
- 2. Strelets M. Detached Eddy Simulation of Massively Separated Flows // AIAA Paper 2001. № 2001-0879. https://doi.org/10.2514/6.2001-879
- 3. Shur M., Strelets M., Travin A. High-order implicit multi-block Navier-Stokes code: Ten-year experience of application to RANS/DES/LES/DNS of turbulent flows // 7th Symp. on Overset Composite Grids & Solution Technol., Huntington Beach, CA, USA. Huntington Beach, 2004.
- 4. Rogers S.E., Kwak D. Upwind Differencing Scheme for the Time Accurate Incompressible Navier-Stokes Equations // AIAA J. 1990. V. 28. № 2. P.253–262. https://doi.org/10.2514/3.10382
- 5. Roe P. Approximate Riemann Solvers, Parameter Vectors and Difference Schemes // J. of Comput. Phys. 1981. V. 43. № 2. P. 357–372. https://doi.org/10.1016/0021-9991 (81)90128-5
- 6. Spalart P.R., Strelets M., Travin A. Direct numerical simulation of large-eddy-break-up devices in a boundary layer // Int. J. of Heat and Fluid Flow. 2006. V. 27. № 5. P. 902–910. https://doi.org/10.1016/j.ijheatfluidflow.2006.03.014
- 7. Lund T., Wu X., Squires K. Generation of turbulent inflow data for spatially-developing boundary layer simulations // J. of Comput. Phys. 1990. V. 140. P. 233–258. https://doi.org/10.1006/jcph.1998.5882
- 8. Spalart P.R, Shur M., Strelets M. et al. Experimental and numerical study of the turbulent boundary layer over shallow dimples // Int. J. of Heat and Fluid Flow. 2019. V. 78. https://doi.org/10.1016/j.ijheatfluidflow.2019.108438
- 9. Van Nesselrooij M., Veldhuis L.L.M., van Oudheusden B.W., Schrijer F.F.J. Drag reduction by means of dimpled surfaces in turbulent boundary layers // Experiments in Fluids. 2016. V. 57. № 142. https://doi.org/10.1007/s00348-016-2230-9
- 10. Лашков Ю.А., Самойлова Н.В. К вопросу о сопротивлении пластины со сферическими углублениями // Изв. РАН. Механика жидкости и газа. 2002. № 2. С. 69–75.
- 11. Lashkov Y.A., Samoilova N.V. On the viscous drag of a plate with spherical recesses // Fluid Dynamics, 2002, vol. 37, no. 2, pp. 231–236. https://doi.org/10.1023/A:1015806332333
- 12. Lienhart H., Breuer M., Koksoy C. Drag reduction by dimples? A complementary experimental/ numerical investigation // Int. J. of Heat and Fluid Flow. 2008. V. 29. №. 3. P. 783–791. https://doi.org/10.1016/j.ijheatfluidflow.2008.02.001
- 13. Spalart P.R. Direct simulation of a turbulent boundary layer up to Rθ = 1410 // J. of Fluid Mech. 1988. V. 187. P. 61–98. https://doi.org/10.1017/S0022112088000345
- 14. Van Campenhout O.W.G., van Nesselrooij M., Veldhuis L.L.M. et al. An experimental investigation into the flow mechanics of dimpled surfaces in turbulent boundary layers // AIAA Paper 2018. № 2018–2062. https://doi.org/10.2514/6.2018-2062
- 15. Van Campenhout O.W.G., van Nesselrooij M., Lin Y.Y. et al. Experimental and numerical investigation into the drag performance of dimpled surfaces in a turbulent boundary layer // Int. J. of Heat and Fluid Flow. 2023. V. 100. https://doi.org/10.1016/j.ijheatfluidflow.2023.109110
- 16. Anderson B., Shur M., Spalart P. et al. Reduction of Aerodynamic Noise in a Flight Deck by Use of Vortex Generators // AIAA Paper. 2005. № 2005–0426 https://doi.org/10.2514/6.2005-426
- 17. Spalart P.R., Shur M.L., Strelets M.Kh., Travin A.K. Direct Simulation and RANS Modelling of a Vortex Generator Flow // Flow Turbulence and Combustion. 2015. V. 95. P. 335–350. https://doi.org/10.1007/s10494-015-9610-8
- 18. Spalart P.R., Allmaras S.R. A One-Equation Turbulence Model for Aerodynamic Flows // AIAA Paper. 1992. № 1992–0439. https://doi.org/10.2514/6.1992-439
- 19. Menter F.R. Zonal Two-Equation k-ω Turbulence Models for Aerodynamic Flows // AIAA Paper. 1993. № 1993–2906. https://doi.org/10.2514/6.1993-2906
- 20. Spalart P.R., Shur M.L. On the sensitization of simple turbulence models to rotation and curvature // Aerospace Sci.&Techn. 1997. V. 1. № 5. P. 297–302. https://doi.org/10.1016/S1270-9638 (97)90051-1
- 21. Smirnov P.E., Menter F.R. Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart–Shur correction term // J. of Turbomachinery. 2009. V. 131. № 4. https://doi.org/10.1115/1.3070573
- 22. Shur M., Spalart P.R., Strelets M., Travin A. Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems // Flow of Turbulence and Combustion. 2014. V. 93. № 1. P. 63–92. https://doi.org/10.1007/s10494-014-9534-8
- 23. Driver D.M. Reynolds shear stress measurements in a separated boundary layer flow // AIAA Paper 1991. № 1991–1787. https://doi.org/10.2514/6.1991-1787
- 24. Dudek J., Georgiadis N., Yoder D. Calculation of turbulent subsonic diffuser flows using the NPARC Navier–Stokes code // AIAA Paper. 1996. № 1996–0497. https://doi.org/10.2514/6.1996-497
- 25. Stabnikov A.S., Kolmogorov D.K., Garbaruk A.V., Menter F.R. Direct Numerical Simulation of Separated Turbulent Flow in Axisymmetric Diffuser // J. of Physics: Conference Series. 2021. V. 2103. № 1. https://doi.org/10.1088/1742-6596/2103/1/012214
- 26. Menter F.R., Kolmogorov D.K., Garbaruk A.V., Stabnikov A.S. Direct and Large Eddy Simulations of Turbulent Flow in CS0 Diffuser on Resolved and Under resolved Meshes // Flow Turbulence and Combustion. 2023. V. 110. № 3. P. 515–546. https://doi.org/10.1007/s10494-023-00399-1
- 27. Bachalo W.D., Johnson D.A. Transonic, turbulent boundary-layer separation generated on an axisymmetric flow model // AIAA J. 1986. V. 24. № 3. P. 437–443. https://doi.org/10.2514/3.9286
- 28. Spalart P.R., Belyaev K.V., Garbaruk A.V. et al. Large-Eddy and Direct Numerical Simulations of the Bachalo-Johnson Flow with Shock-Induced Separation // Flow Turbulence and Combustion. 2017. V. 99. № 3. P. 865–885. https://doi.org/10.1007/s10494-017-9832-z
- 29. Belyaev K.V., Garbaruk A.V., Shur M.L. et al. Experience of Direct Numerical Simulation of Turbulence on Supercomputers // In: Communications in Computer & Information Science. 2017. V. 687. P. 67–77. https://doi.org/10.1007/978-3-319-55669-7_6
- 30. Shur M.L., Spalart P.R., Strelets M.Kh. et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities // Int. J. of Heat and Fluid Flow. 2008. V. 29. № 6. P. 1638–1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
- 31. Shur M.L., Spalart P.R., Strelets M.Kh., Travin A.K. Direct numerical simulation of the two-dimensional speed bump flow at increasing Reynolds numbers // Int. J. of Heat and Fluid Flow. 2021. V. 90. № 3. https://doi.org/10.1016/j.ijheatfluidflow.2021.108840
- 32. Balin R., Jansen K.E., Spalart P.R. Wall-Modeled LES of flow over a Gaussian bump with strong pressure gradients and separation // AIAA Paper. 2020. № 2020–3012. https://doi.org/10.2514/6.2020-3012
- 33. Uzun A., Malik M.R. Large-Eddy Simulation of flow over a wall-mounted hump with separation and reattachment // AIAA J. 2017. V. 56. № 2. P. 1–16. https://doi.org/10.2514/1.J056397