RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Internal gravity waves dynamics in a stratified viscous medium with background shear flows under critical regimes generation

PII
S3034575825030015-1
DOI
10.7868/S3034575825030015
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 3
Pages
484-493
Abstract
The paper considers the problem of propagation of linear internal gravity waves in a layer of viscous stratified medium of finite depth with horizontal background shear currents under critical wave generation conditions. In a flat formulation, new model physical formulations of problems in which critical conditions may arise are discussed, in particular, wave generation by periodic oscillations of the bottom. For arbitrary distributions of shear currents and buoyancy frequency satisfying the Miles–Howard conditions and natural regularity conditions, a model equation describing the main features of solutions near the critical level was proposed. For real parameters of stratified media, using the asymptotics of the model equation, estimates of the spatial scales on which it is necessary to take into account the viscosity of the medium were obtained.
Keywords
внутренние гравитационные волны сдвиговые течения частота плавучести спектральная задач уравнение Тейлора–Гольштейна критический уровень вязкость
Date of publication
02.06.2025
Year of publication
2025
Number of purchasers
0
Views
50

References

  1. 1. Fabrikant A.L., Stepanyants Yu.A.Propagation of Waves in Shear Flows. World Sci. Pub., 1998. 304 p.
  2. 2. Miropol'skii Yu.Z., Shishkina O.V.Dynamics of Internal Gravity Waves in the Ocean. Boston: Kluwer Acad. Pub., 2001. 406 p.
  3. 3. Ozsoy E.Geophysical Fluid Dynamics II. Stratified Rotating Fluid Dynamics of the Atmosphere–Ocean. Cham (Switzerland AG): Springer Nature, 2021.323p.
  4. 4. Булатов В.В., Владимиров Ю.В.Волны в стратифицированных средах. М.:Наука, 2015. 735с.
  5. 5. Morozov E.G.Oceanic Internal Tides. Observations, Analysis and Modeling. Berlin: Springer, 2018. 317 p.
  6. 6. Morozov E.G., Tarakanov R.Yu., Frey D.I.Bottom Gravity Currents and Overflow in Deep Channels of the Atlantic Ocean. Switzerland AG: Springer Nature, 2021. 483 p.
  7. 7. Gordey A.S., Frey D.I., Drozd I.D., Krechik V.A., Smirnova D.A., Gladyshev S.V., Morozov E.G.Spatial variability of water mass transports in the Bransfield Strait based on direct current measurements // Deep Sea Res. Pt. I: Oceanogr. Res. Papers. 2024. V. 207. P. 1–15.
  8. 8. Talipova T., Pelinovsky E., Didenkulova E.Internal tsunami waves in a stratified ocean induced by explosive volcano eruption: a parametric source // Phys. Fluids. 2024.V. 36.P. 042110.
  9. 9. Bouruet-Aubertot P.I., Thorpe S.A.Numerical experiments of internal gravity waves an accelerating shear flow // Dyn. Atm. Oceans. 1999. V. 29. P. 41–63.
  10. 10. Fraternale F., Domenicale L, Staffilan G.,Tordella D.Internal waves in sheared flows: lower bound of the vorticity growth and propagation discontinuities in the parameter space // Phys. Rev. 2018.V. 97. № 6. P. 063102.
  11. 11. Slepyshev A.A., Vorotnikov D.I.Generation of vertical fine structure by internal waves in a shear flows // Open J. Fluid Mech. 2019. V. 9. P. 140–157.
  12. 12. Howland C.J., Taylor J.R., Caulfield C.P.Shear-induces breaking of internal gravity waves // J. Fluid Mech. 2021. V. 921. A24.
  13. 13. Gervais A.D., Swaters G.E., Sutherland B.R.Transmission and reflection of three-dimensional Boussinesq internal gravity wave packets in nonuniform retrograde shear flow // Phys. Rev. Fluids. 2022. V. 7. P. 114802.
  14. 14. Shugan I., Chen Y.-Y.Kinematics of the ship’s wake in the presence of a shear flow // J. Mar. Sci. Eng.2021. V. 9. P. 7.
  15. 15. Bretherton F.P.The propagation of groups of internal gravity waves in a shear flow // Quart. J. Royal. Metereol. Soc. 1966. V. 92. P. 466–480.
  16. 16. Young W.R., Phines P., Garret C.J.R.Shear flows dispersion, internal waves and horizontal mixing // J. Phys. Oceanogr. 1982. V. 12(6). P. 515–527.
  17. 17. Brown S.V., Stewartson K.On the nonlinear reflection of a gravity waves at a critical level. Part 2 // J. Fluid Mech. 1982. V. 115. P. 217–230.
  18. 18. Voelker G.S., Akylas T.R., Achatz U.An application of WKBJ theory for triad interactions of internal gravity waves in varying background flows // Q.J.R. Meteorol. Soc. 2021. V. 147. P. 1112.
  19. 19. Hirota M., Morrison P.J.Stability boundaries and sufficient stability conditions for stably stratified, monotonic shear flows // Phys. Lett. A. 2016. V. 380(21). P. 1856–1860.
  20. 20. Carpenter J.R., Balmforth N. J., Lawrence G.A.Identifying unstable modes in stratified shear layers // Phys. Fluids. 2010. V. 22. P. 054104.
  21. 21. Miles J.W.On the stability of heterogeneous shear flow // J. Fluid Mech. 1961. V. 10 (4).Р. 495–509.
  22. 22. Gavrileva A.A., Gubarev Yu.G., Lebedev M.P.The Miles theorem and the first boundary value problem for the Taylor–Goldstein equation // J. Appl.&Industr. Math. 2019. V. 13(3). P. 460–471.
  23. 23. Churilov S.On the stability analysis of sharply stratified shear flows // Ocean Dyn. 2018. 68. P. 867–884.
  24. 24. Bulatov V.V.Wave dynamics of stratified media with variable shear flows // Fluid Dyn. 2023. V. 58. Suppl. 2. P. S219–S229.
  25. 25. Bulatov V.V.Features of modeling the wave dynamics of stratified media taking into account viscosity and compressibility // Fluid Dyn. 2023. V. 58. Suppl. 2. P. S253–S262.
  26. 26. Булатов В.В.Аналитические свойства функции Грина уравнения внутренних гравитационных волн в стратифицированной среде со сдвиговыми течениями // ТМФ. 2022. Т. 211 (2). С. 200–215.
  27. 27. Булатов В.В.Аналитические свойства решений уравнения внутренних гравитационных волн с течениями для критических режимов волновой генерации // Тр. МИАН. 2023. Т. 322. С. 71–82.
  28. 28. Уиттекер Э.Т., Ватсон Дж.Н.Курс современного анализа. М.: URSS, 2015. 864 с.
  29. 29. Абрамовиц М., Стиган И.Справочник по специальным функциям. М.: Наука, 1979. 832 с.
  30. 30. Лаврентьев М.А., Шабат Б.В.Методы теории функций комплексного переменного. М.: Физматлит, 1987. 688 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library