- PII
- S3034575825020087-1
- DOI
- 10.7868/S3034575825020087
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 89 / Issue number 2
- Pages
- 295-309
- Abstract
- The study is devoted to the problem of applying the method of variable elasticity parameters, which uses the provisions of the deformation theory of plasticity, to solving problems of autofreting cylindrical shells loaded with internal pressure. The paper considers two cases of autofreting thick-walled cylindrical shells: with longitudinal stretching and without longitudinal stretching. When determining the stress-strain state, the shell material was considered incompressible and dependencies in the form of a power function and linear power functions were used to describe the deformation diagram of the material. The analysis of the loading process was carried out by studying the loading trajectories of various points of the shell wall in the Ilyushin stress space and the Nadai-Lode parameter for stresses. As studies have shown, in the case of autofreting with longitudinal tension, as well as when loading the shell with internal pressure up to destruction, loading is simple for all functions describing the deformation diagram, which proves the validity of solving such problems by the method of variable elasticity parameters. When autofreting the shell without longitudinal stretching, using a power approximation of the deformation diagram, the loading process up to destruction can be considered simple, which corresponds to Ilyushin’s theorem on simple loading. With the linear-power approximation of the deformation diagram, the process of loading the shell is not simple, but a comparative analysis of the stress state obtained with the power-law and linear-power approximation of the deformation diagram showed a slight difference at all stages of loading. Moreover, these differences decrease with increasing pressure, which allows us to conclude that the method of variable elasticity parameters can be applied to solving problems of autofreting cylindrical shells without longitudinal stretching, as well as loading such shells with internal pressure up to destruction.
- Keywords
- автофретирование упругопластическое деформирование пространство напряжений Ильюшина параметр Надаи-Лоде толстостенная цилиндрическая оболочка
- Date of publication
- 01.04.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 46
References
- 1. Shufen R., Dixit U.S. A review of theoretical and experimental research on various autofrettage processes // J. Pressure Vessel Technol. 2018. V. 140. № 5. P. 050802.
- 2. Zhu R., Zhu G., Tang F. Analysis on autofrettage of cylinders // Chin. J. Mech. Eng. 2012. № 25. P. 615-623. https://doi.org/10.3901/CJME.2012.03.615
- 3. Dixit U.S., Kamal S.M., Shufen R. Autofrettage Processes: Technology and Modelling. Boca Raton: CRC Press, 2019. 276 p.
- 4. Sun L., Sun, L., Li, G., Wang, Y., Mitrouchev, P. Research on optimum autofrettage pressure of thick-walled cylinders // in: Lecture Notes in Electrical Eng. 2024. V. 1154. https://doi.org/10.1007/978-981-97-0665-5_42
- 5. Rajput M., Kamal S.M., Patil R.U. Analysis of thermal autofrettage of disks using von Mises yield criteria // in: Lecture Notes in Mechanical Eng. Springer: Singapore, 2024. https://doi.org/10.1007/978-981-97-0418-7_31
- 6. Hu Z., Parker A.P. Residual stress analysis of Re-autofrettage of a Swage-Autofrettaged tube by computer modeling incorporating accurate material representation // J. of Mater. Eng.&Perform. 2024. № 33. P. 7455-7464. https://doi.org/10.1007/s11665-024-09272-2
- 7. Mohamed E., Ramin S., Ossama R. Development of an efficient design optimization strategy for thick-walled cylinders treated with combinations of autofrettage, shrink-fit and wire-winding processes // Int. J. Engng. Sci.&Technol. 2024., № 57. P. 101799. https://doi.org/10.1016/j.jestch.2024.101799
- 8. Kim T., Kim H.Y. Optimal autofrettage process design for enhancing the fatigue life of the ultra-high-pressure hydrogen valve // J. Mech. Sci. Technol. 2024. № 38. P. 4847-4859. https://doi.org/10.1007/s12206-024-0820-7
- 9. Jahed H., Dubey R.N. An axisymmetric method of elasticplastic analysis capable of pre-dicting residual stress field // ASME J. of Pressure Vessel Technol. 1997. № 119 (3). P. 264-273.
- 10. Смирнов-Аляев Г.А. Теория автоскрепления цилиндров. М.: Оборонгиз, 1940. 284 с.
- 11. Малинин Н.Н. Прикладная теория пластичности и ползучести. М.: Машиностроение, 1975. 399 с.
- 12. Писаренко Г.С., Можаровский Н.С. Уравнения и краевые задачи теории пластичности и ползучести. Киев: Наук. думка, 1981. 496 с.
- 13. Andrianov I.K., Feoktistov S.I. Inverse problem of elastic-plastic deformation of a free thickwalled cylindrical shell taking into account the nonlinear law of hardening // Probl. of Strength&Plasticity. 2024. № 86. P. 259-269. https://doi.org/10.32326/1814-9146-2024-86-3-259-269
- 14. Andrianov I.K., Feoktistov S.I. Bearing capacity of spherical thick-walled shell taking into account compressibility and nonlinear plasticity // Mater. Phys.&Mech. 2022. № 50(3). P. 410-419. https://doi.org/10.18149/MPM.5032022_5
- 15. Феоктистов С.И., Андрианов И.К., Тхет Л. Моделирование напряжённо-деформированного состояния толстостенных цилиндрических оболочек с учётом физической нелинейности материала // Уч. зап. Комсомольского-на-Амуре гос. технич. ун-та. 2022. № 3 (59). С. 12-20. https://doi.org/10.17084/20764359-2022-59-12
- 16. Зубчанинов В.Г. Основы теории упругости и пластичности. М : Высшая школа, 1990. 367 с.
- 17. Hodge P.G., White G.N. A quantative comparison of flow and deformation theories of plasticity // J. of Appl. Mech. 1950. V. 17. № 2. P. 180-184.