RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

On the Optimal Choice of Young's Modulus for a Functionally Graded Material

PII
S3034575825010071-1
DOI
10.7868/S3034575825010071
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 89 / Issue number 1
Pages
90-105
Abstract
The problem of maximizing the value of the first natural frequency for a functionally graded material depending on the variation law of Young's modulus is considered. It is assumed that there is a limitation on the average integral value of Young's modulus. The effect of variable material properties on the value of the first natural frequency is shown using the finite element method for the numerical solution of a two-dimensional axisymmetric problem of free oscillations of a cylinder. The optimality condition is obtained using the methods of variational calculus based on the general formulation of the problem for an inhomogeneous elastic isotropic body. It is noted that the left-hand side of this condition has a quadratic form. The problem of finding the optimal variation law of Young's modulus is essentially nonlinear in the general case and special numerical methods must be used to solve it. Three special cases are considered using the obtained optimality condition: bending vibrations of a circular solid plate, longitudinal vibrations of a rod and radial vibrations of a solid thin disk, taking into account the corresponding hypotheses. The optimal variation laws of Young's modulus and the displacement function are obtained in analytical form for all problems. Particularly, in the problem for the disk, a representation is proposed for the radial component of the displacement field, which is described by a linear law. It is shown that in this case the corresponding radial and tangential components of the stress tensor are equal. The sought-for function of the change in Young's modulus along the radial coordinate is found in analytical form from the equation of motion and the boundary condition on the outer boundary. An analytical expression is obtained for determining the value of the natural frequency, corresponding to the found solution. The accuracy of this formula is estimated by comparing it with the numerical solution obtained using the finite element method in the FlexPDE package. A comparison of the values of the natural frequency for homogeneous and inhomogeneous disks is made.
Keywords
цилиндр стержень пластина диск функционально-градиентный материал метод конечных элементов модуль Юнга оптимизация собственная частота
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
60

References

  1. 1. Suresh S., Mortensen A. Fundamentals of Functionally Graded Materials. London: IOM Commun. Ltd., 1998. 165 p.
  2. 2. Birman V., Byrd L. Modeling and analysis of functionally graded materials and structures // Appl. Mech. Rev. 2007. V. 60. № 5. P. 195-216. https://www.doi.org/10.1115/1.2777164
  3. 3. Kieback B., Neubrand A., Riedel H. Processing techniques for functionally graded materials // Mater. Sci. Eng., A. 2003. V. 362. № 1-2. https://www.doi.org/10.1016/S0921-5093 (03)00578-1
  4. 4. Naebe M., Shirvanimoghaddam K. Functionally graded materials: A review of fabrication and properties // Appl. Materials Today. 2016. V. 5. P. 223-245. https://www.doi.org/10.1016/j.apmt.2016.10.001
  5. 5. Селяев В.П., Карташов В.А., Клементьев В.Д., Лазарев А.Л. Функционально-градиентные композиционные строительные материалы и конструкции. Саранск: Мордовский государственный ун-т им. Н.П. Огарева, 2005. 160 с.
  6. 6. Saleh B., Jiang J., Fathi R. et al. 30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges // Composites, Pt. B. 2020. V. 201. Art. No. 108376. https://www.doi.org/10.1016/j.compositesb.2020.108376
  7. 7. Boggarapu V., Gujjala R., Ojha S. et al. State of the art in functionally graded materials // Compos. Struct. 2021. V. 262. Art. No. 113596. https://www.doi.org/10.1016/j.compstruct.2021.113596
  8. 8. Ольхофф Н. Оптимальное проектирование конструкций: Вопросы вибрации и потери устойчивости. Механика. Новое в зарубежной науке: Сб. статей. Вып. 27. М.: Мир, 1981. 277 с.
  9. 9. Баничук Н.В. Оптимизация форм упругих тел. М.: Наука, 1980. 256 с.
  10. 10. Баничук Н.В. Введение в оптимизацию конструкций. М.: Наука, 1986. 304 с.
  11. 11. Yang S.T., Liang Y.J. Stacking sequence optimization of composite laminates for maximum fundamental frequency using Bayesian optimization computational framework // Results in Engng. 2024. V. 23. Art. No. 102586. https://www.doi.org/10.1016/j.rineng.2024.102586
  12. 12. Narita Y., Robinson P. Maximizing the fundamental frequency of laminated cylindrical panels using layerwise optimization // Int. J. of Mech. Sci. 2006. V. 48. № 12. P. 1516-1524. https://www.doi.org/10.1016/j.ijmecsci.2006.06.008
  13. 13. Trias D., Maimi P., Blanco N. Maximization of the fundamental frequency of plates and cylinders // Compos. Struct. 2016. V. 156. P. 375-384. https://www.doi.org/10.1016/j.compstruct.2015.08.034
  14. 14. Marzok A., Waisman H. Topology optimization of extruded beams modeled with the XFEM for maximizing their natural frequencies // Mech. Res. Commun. 2024. V. 135. Art. No. 104234. https://www.doi.org/10.1016/j.mechrescom.2023.104234
  15. 15. Kamgar R., Rahmani F., Rahgozar R. Geometrical and material optimization of the functionally graded doubly-curved shell by metaheuristic optimization algorithms // Structures. 2024. V. 62. Art. No. 106254. https://www.doi.org/10.1016/j.istruc.2024.106254
  16. 16. Jensen J.S., Pedersen N.L. On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases // J. of Sound&Vibr. 2006. V. 289. № 4-5. P. 967-986. https://www.doi.org/10.1016/j.jsv.2005.03.028
  17. 17. Du J., Olhoff N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps // Struct.&Multidisc. Optimiz. 2007. V. 34. P. 91-110. https://www.doi.org/10.1007/s00158-007-0101-y
  18. 18. Sun J., Tian Q., Hu H., Pedersen N.L. Topology optimization for eigenfrequencies of a rotating thin plate via moving morphable components // J. of Sound&Vibr. 2019. V. 448. P. 83-107. https://www.doi.org/10.1016/j.jsv.2019.01.054
  19. 19. Li Q., Wu Q., Dou S. et al. Nonlinear eigenvalue topology optimization for structures with frequency-dependent material properties // Mech. Syst.&Signal Proc. 2022. V. 170. Art. No. 108835. https://www.doi.org/10.1016/j.ymssp.2022.108835
  20. 20. Meng Z., Yang G., Wu Q. et al. Reliability-based topology optimization for fundamental frequency maximization with frequency band constraints // Mech. Syst.&Signal Proc. 2023. V. 195. Art. No. 110295. https://www.doi.org/10.1016/j.ymssp.2023.110295
  21. 21. Bachour R.S., Nicoletti R. Natural frequencies and band gaps of periodically corrugated beams // J. of Vibr.&Acoust. 2021. V. 143. № 4. Art. No. 044502. https://www.doi.org/10.1115/1.4048889
  22. 22. Shi J., Wang W., Fan Y. et al. Creating absolute band gap based on frequency locking of three wave modes in a wavy plate // J. of Sound&Vibr. 2024. V. 592. Art. No. 118623. https://www.doi.org/10.1016/j.jsv.2024.118623
  23. 23. Zhou L., Han W., Wan S. Low frequency band gap for box girder attached IDVAs // ThinWalled Struct. 2022. V. 174. Art. No. 109088. https://www.doi.org/10.1016/j.tws.2022.109088
  24. 24. Niordson F. Optimal disks in vibration // Int. J. of Solids&Struct. 1997. V. 34. № 23. P. 2957-2968. https://www.doi.org/10.1016/S0020-7683 (97)00186-8
  25. 25. Blom A.W., Setoodeh S., Hol J.M.A.M., Gurdal Z. Design of variable-stiffness conical shells for maximum fundamental eigenfrequency // Comput.&Struct. 2008. V. 86. № 9. P. 870-878. https://www.doi.org/10.1016/j.compstruc.2007.04.020
  26. 26. Blom A.W., Stickler P.B., Gurdal Z. Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction // Compos. Pt. B: Engng. 2010. V. 41. № 2. P. 157-165. https://www.doi.org/10.1016/j.compositesb.2009.10.004
  27. 27. Ватульян А.О., Недин Р.Д. Об одной задаче оптимизации для преднапряженной пластины с переменной жесткостью // Пробл. прочн. и пластич. 2024. Т. 86. № 2. С. 202-214. https://www.doi.org/10.32326/1814-9146-2024-86-2-202-214
  28. 28. Lurie A.I., Belyaev A. Theory of Elasticity. Berlin; Heidelberg: Springer, 2005. 1050 p. https://www.doi.org/10.1007/978-3-540-26455-2
  29. 29. Ломакин В.А. Теория упругости неоднородных тел. М.: Ленанд, 2014. 376 с.
  30. 30. Калинчук В.В., Белянкова Т.И. Динамика поверхности неоднородных сред. М.: Физматлит, 2009. 316 с.
  31. 31. Ватульян А.О. Коэффициентные обратные задачи механики. М.: Физматлит, 2019. 272 с.
  32. 32. Vatulyan A.O., Dudarev V.V., Mnukhin R.M. Functionally graded cylinders: Vibration analysis // ZAMM. J. of Appl. Math.&Mech. 2023. V. 103. № 11. Art. No. e202200430. https://www.doi.org/10.1002/zamm.202200430
  33. 33. Vatulyan A.O., Dudarev V.V., Mnukhin R.M. Identification of characteristics of a functionally graded isotropic cylinder // Int. J. of Mech.&Mater. in Design. 2021. V. 17. № 2. P. 321-332. https://www.doi.org/10.1007/s10999-020-09527-5
  34. 34. Абовский Н.П., Андреев Н.П., Деруга А.П. Вариационные принципы теории упругости и теории оболочек. М.: Наука, 1978. 288 с.
  35. 35. Gupta V.K., Murthy P.N. Optimal design of uniform non-homogeneous vibrating beams // J. of Sound Vibr. 1978. V. 59. № 4. P. 521-531. https://www.doi.org/10.1016/S0022-460X (78)80132-1
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library