Рассматриваются двоякопериодические контактные задачи для упругого слоя с неизвестной областью контакта. Одна грань слоя находится в условиях скользящей или жесткой заделки. Задачи сводятся к интегральным уравнениям, ядра которых не содержат квадратур. Для случая полного контакта другой грани слоя с двумерной синусоидальной жесткой поверхностью задачи имеют точное решение, которое используется для отладки программ, реализующих численный метод нелинейных интегральных уравнений Галанова, позволяющий одновременно определить область контакта и контактные давления. Рассчитаны механические характеристики при внедрении системы эллиптических параболоидов, изучен переход от дискретной к непрерывной области контакта.
Рассматриваются контактные задачи о двух одинаковых тонких жестких эллиптических включениях в трехмерном упругом клине двухгранного угла, внешние грани которого подчинены условиям жесткой или скользящей заделки. Задачи сведены к интегральным уравнениям с симметричными ядрами. Вводятся два безразмерных геометрических параметра, характеризующих расположение включений в биссекториальной полуплоскости клина. В предположении линейной связи между параметрами для решения применяется регулярный асимптотический метод. Асимптотика для двух включений сравнивается с соответствующими решениями для единичного включения в клине и для периодической цепочки включений, ось которой параллельна ребру клина.
Рассматривается пространственная контактная задача о вдавливании одного или двух несимметричных жестких штампов в грань ортотропного слоя, другая грань которого лежит без трения на жестком основании. Задача сведена к интегральному уравнению, из ядра которого выделена главная часть, не содержащая квадратур и соответствующая случаю внедрения штампа в ортотропное полупространство. В условиях неизвестной области контакта для решения применяется численный метод нелинейных граничных интегральных уравнений, позволяющий одновременно определить область контакта и контактное давление. Изучены механические характеристики контакта. Показана возможность слияния изначально дискретных областей контакта для пары штампов, расположенных вдоль одной из координатных осей.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation