В статье построены периодические по времени асимптотические решения одномерной нелинейной системы уравнений мелкой воды в бассейне переменной глубины \(D(x)\) с двумя пологими берегами (что означает обращение в нуль функции \(D(x)\) в точках, задающих берег) или с одним пологим берегом и вертикальной стенкой. Такие решения описывают стоячие волны, аналогичные известным волнам Фарадея в бассейнах с вертикальными стенками. В частности, они приближенно описывают сейши в протяженных бассейнах. Конструкция таких решений состоит из двух этапов. Сначала определяются гармонические по времени точные и асимптотические решения линеаризованной системы, порожденные собственными функциями оператора \(d{\text{/}}dxD(x)d{\text{/}}dx\), а затем с помощью недавно развитого подхода, основанного на упрощении и модификации преобразования Кэрриера–Гринспена, по ним в параметрической форме восстанавливаются решения нелинейных уравнений. Полученные асимптотические решения сравниваются с результатами эксперимента, основанного на возбуждении волн в бассейне с помощью параметрического резонанса.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации