На основе применения метода асимптотического расщепления к пространственной задаче теории упругости построена теория деформирования слоистых композитных стержней. Получена система из четырех обыкновенных дифференциальных уравнений с постоянными коэффициентами на три неизвестные функции макроперемещений и неизвестную функцию угла закручивания поперечного сечения стержня. Вид и порядок этих уравнений зависит от номера асимптотического приближения. Коэффициенты указанной системы являются интегральными характеристиками вспомогательных краевых задач в поперечном сечении стержня. Представленная теория содержит систему из четырех связанных между собой уравнений, т.е. в общем случае процессы изгиба в двух плоскостях, растяжения-сжатия и кручения являются взаимосвязанными. Полученная теория включает в себя как частный случай следующие теории: классическая теория изгиба балки Бернулли-Эйлера, теория свободного кручения Сен-Венана, теория стесненного кручения стержней Власова.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации