Рассмотрена задача о вдавливании в упругую полуплоскость системы жестких штампов, упруго связанных с общей жесткой платформой. Получена вариационная формулировка задачи в виде граничного вариационного неравенства с использованием оператора Пуанкаре-Стеклова для упругой полуплоскости. Приведена эквивалентная вариационному неравенству задача минимизации, для аппроксимации которой использован гранично-элементный подход. В результате получена задача квадратичного программирования с ограничениями в виде равенств и неравенств, для численного решения которой применялся алгоритм на основе метода сопряженных градиентов. Методом вычислительного эксперимента исследованы некоторые закономерности коллективного индентирования упругой полуплоскости системой жестких штампов, упруго связанных с общей платформой.
Рассмотрена задача о вдавливании жесткого штампа конечных размеров с поверхностным микрорельефом в стратифицированную упругую полосу. Приведены граничные вариационные формулировки задачи с использованием оператора Пуанкаре–Стеклова, отображающего нормальные напряжения в нормальные перемещения. При аппроксимации этого оператора применялось дискретное преобразование Фурье, численная реализация которого производилась с помощью алгоритмов быстрого преобразования Фурье. Для вычисления передаточной функции использовалась вариационная формулировка краевой задачи для трансформант перемещений. В результате аппроксимации исходной контактной задачи получена задача квадратичного программирования с ограничениями виде равенств и неравенств, для численного решения которой применялся алгоритм на основе метода сопряженных градиентов. Установлен ряд закономерностей контактного взаимодействия.
Индексирование
Scopus
Crossref
Higher Attestation Commission
At the Ministry of Education and Science of the Russian Federation