В приближении модели Феппля-фон Кармана решена задача о деформировании круговой пластины сцепленной с массивным основанием по контуру, совпадающего с границей отверстия в основании, под действием поперечной нагрузки. Рассматривались граничные условия двух типов: жесткой и обобщенной упругой заделки. Решение получено двумя способами: при помощи разложения в степенные ряды поперечных смещений и продольных усилий, представленных в цилиндрической системе координат, а также численным интегрированием уравнений Феппля-фон Кармана, с последовательным уточнением граничных условий, аналогично “методу стрельбы”. Получены выражения для компонент смещения круговой пластины. Выявлена роль, вносимая податливостью подложки в изменение формы профиля круговой пластины, действующих продольных усилий и изгибающих моментов. Проведено сравнение с другими решениями. Исследованы области применимости методов.
Индексирование
Scopus
Crossref
Высшая аттестационная комиссия
При Министерстве образования и науки Российской Федерации