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В данной статье представлен консервативный численный алгоритм для решения 
уравнения Кана–Хилларда. Предложен способ линеаризации уравнения Кана–
Хилларда, построена численная схема на основе метода контрольного объема. 
Подробно описана реализация предложенного численного алгоритма. Консерва-
тивность предложенной дискретной схемы проверена путем численного модели-
рования. Проведены численные эксперименты.
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1. Введение. Некоторые промышленные проблемы часто связаны с многофазными 
потоками, поэтому численное моделирование многофазных течений является акту-
альной задачей. Описание таких систем значительно различается в зависимости от 
того, присутствует граница раздела фаз или нет. А изучение положения и топологи-
ческих изменений межфазной границы является одной из важных задач при моде-
лировании течений гетерогенных сред [1]. Из-за сложности работы с неизвестными 
движущимися границами раздела многофазные потоки сложно изучать с точки зре-
ния математического моделирования и численных алгоритмов.

Подходы к моделированию многофазных потоков отличаются способом задания 
межфазной границы и  делятся на две группы. К  первой группе относятся методы, 
в которых на межфазной границе происходит разрыв характеристической функции, 
а местоположение границы рассчитывается на каждом временном шаге. К таким ме-
тодам относятся, например, метод объема жидкости (volume of fluid) [2], метод мар-
керов [3].

Вторая группа – это так называемые методы диффузной границы [4]. В них меж-
фазная граница моделируется как узкая область, в  пределах которой физические 
величины (плотность, вязкость и т.д.) и межфазные силы изменяются плавно. Пре-
имуществом такого подхода является то, что границу не нужно отслеживать явно [5]. 
Одним из методов второй группы является модель фазового поля [6], а ее основным 
уравнением – уравнение Кана–Хилларда [7].

2. Уравнение Кана–Хилларда. Рассматривается смесь двух несжимаемых жидко-
стей с одинаковой плотностью в ограниченной области Ω 2Ì   с непрерывной гра-
ницей Ω¶ . В методе фазового поля для моделирования плавного перехода величин 
через границу раздела между фазами вводится вспомогательная переменная ϕ, 
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называемая переменной фазового поля или параметром порядка, указывающим 
фазы. Динамика переменной фазового поля определяется уравнением Кана–Хил-
ларда [7]:

	 ( ) ( )    ϕ
∆η ϕ Ω, , ; ,0t M t t T

t
¶

= Î < £
¶

x x

	 ( ) ( ) ( ) 2, ,t F tη ϕ ϕ ε ∆ϕ¢= - x ,	 (2.1)

где ( )ϕ ,tx  – переменная фазового поля, ε – положительная константа (толщина гра-
ницы между фазами), M – подвижность межфазной границы (функция мобильно-
сти), ( )η ϕ,t  – химический потенциал, ( )ϕF ¢  – свободная энергия.

Граничные и начальные условия задаются уравнениями:

	 0ϕ ηÑ × = Ñ × =n n ; ΩÎ ¶x , ( ) ( )0,0ϕ ϕ=x x ; ΩÎx ,	 (2.2)

где n – вектор внешней нормали к границе Ω¶ .
Уравнение Кана–Хилларда возникает из функционала свободной энергии Гельм-

гольца:

	 ( ) ( )
Ω

ε
ϕ ϕ ϕ

2 2

2
F d
æ ö÷ç ÷ç= + Ñ ÷ç ÷÷çè øò x ,	 (2.3)

где ( ) ( )ϕ ϕ
220.25 1F = -   – гидрофобная объемная составляющая, которая является 

“классической” частью свободной энергии (принимает вид двухъямного потенциала 
(см. рис. 1), ε ϕ

2 2

2
Ñ  – гидрофильная поверхностная составляющая.

При этой форме ожидается, что ϕ останется в  пределах физически допустимой 
области [−1; 1], где предельные значения характеризуют чистые фазы (например, 
ϕ = − 1 для фазы 1 и ϕ = 1 для фазы 2). В [8] показано, что при таком выборе ( )ϕF  
уравнение Кана–Хилларда не удовлетворяет принципу максимума, а начальные дан-
ные в интервале [−1; 1] могут привести к решениям, немного выходящим за пределы 

Рис. 1. Двухъямный потенциал Гинзбурга–Ландау ( )ϕF

0.3

0.15

0

F(φ)

–1.5  –0.5  0.5  φ  1.5



138 КОНСЕРВАТИВНАЯ ЧИСЛЕННАЯ СХЕМА ДЛЯ РЕШЕНИЯ УРАВНЕНИЯ…

этого диапазона, поэтому упрощенный двухъямный потенциал ( )ϕF  часто заменяют 
более общими формами. Однако обычно решения остаются в пределах физического 
диапазона, поскольку точки равновесия ϕ = ±1 асимптотически устойчивы, поэтому 
для разработки нашей численной схемы упрощенная форма остается практически 
интересной и легко реализуемой. В компьютерной реализации численной схемы при 
необходимости может использоваться скорректированная функция ϕ [9]:

	
( )

 ϕ ϕ
ϕ

ϕ ϕ

, 1
sgn ,  1

ìï £ïï= íï >ïïî

если

если

Переменная фазового поля ( )ϕ ,tx  обладает следующими свойствами.
Свойство 1. Если функция ( )ϕ ,tx  является решением уравнения Кана–Хилларда 

(2.2)–(2.3), то она удовлетворяет закону сохранения массы:
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Свойство 2. Полная свободная энергия (2.3) будет со временем уменьшаться:
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0
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Для удобства запишем обезразмеренное уравнение Кана–Хилларда (2.1) с учетом 
( ) ( )ϕ ϕ

220.25 1F = -  в двухмерной постановке в декартовой системе координат:
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	 (2.4)
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Безразмерные физические параметры: диффузионное число Фурье  – Fo, число 
Кана – Cn вычисляются по формулам:

	  ε2
0
2 2

0 0

Fo ,Cn
Mt

L L
= = ,

где 0L  и  0t  – характерные длина и время.
Уравнение Кана–Хилларда исследовалось множеством авторов, для его решения 

предложено большое количество численных методов (например, итерационные ме-
тоды сверхрелаксации [10], обобщенный метод Ньютона [11] и т.д.). Из-за наличия 
нелинейности и четвертой производной такие методы достаточно сложны для реа-
лизации и в каждой конкретной задаче будут иметь свои особенности. В настоящей 
работе представлена численная схема на основе метода контрольного объема с уче-
том линеаризации для решения системы уравнений Кана–Хилларда.

3. Линеаризация уравнения Кана–Хилларда. Уравнение Кана–Хилларда трудно 
решить численно не только из-за значительного объема вычислений, возникающего 
в многомерных задачах, но и из-за бигармонического и нелинейного операторов [12]. 
В статье [13] приводится способ линеаризации задачи Кана–Хилларда и полунеявная 
численная схема. В настоящей работе мы используем подобный прием для линеари-
зации уравнения Кана–Хилларда на базе метода контрольного объема.



139ГАЛЕЕВА и др.

Обозначим ( )η η ∆n n t=  – значение параметра η в момент времени n, шаг по вре-
мени равен ∆ tt T N= , T – итоговое время, tN  – общее число временных шагов. То-
гда явно-неявная нелинейная схема для функции ( )η ϕ  определяется выражением:

	 ϕ ϕ
η ϕ ϕ

2 2
1 1 3 1

2 2
( ) Cn

n n
n n n

x y
+ + +
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Распишем дифференциал из (2.4) в следующем виде:
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Хотя такое нелинейное расщепление является разумным и  имеет наименьшую 
локальную ошибку усечения среди одношаговых методов, которые являются гради-
ентно-устойчивыми, в [13] предложен способ линеаризации с последующим разде-
лением стабилизирующих и сжимающих членов. В этой работе доказано, что такая 
линеаризация приводит к набору линейных уравнений, которые необходимо решать 
на каждом временном шаге. Для избавления от нелинейности положим, что ϕ23 1-  
будет рассчитываться на предыдущем временном слое n: ϕ 23( ) 1n - .

Для удобства известные значения на предыдущем временном слое обозначим ин-
дексом 0, неизвестные значения на текущем временном слое будем записывать без 
индекса: ϕ ϕ1n+ º , ϕ ϕ0n º .

Сделаем замену значений на текущем временном слое:
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Аналогично линеаризуем дифференциал по y из (2.4):

	 η ϕ ζ
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y yy y
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Будем использовать эти линеаризованные слагаемые в  численной схеме и  даль-
нейших расчетах.

4. Численный алгоритм для линеаризованной системы уравнений Кана–Хилларда. 
Численную схему для решения уравнений (2.4)–(2.5) построим на базе метода кон-
трольного объема [14]. Основная идея метода заключается в следующем. Расчетная 
область разбивается на конечное множество непересекающихся контрольных объе-
мов, в каждом из которых находится одна узловая точка. Дифференциальное урав-
нение интегрируется по каждому из контрольных объемов. В результате получается 
дискретный аналог дифференциальных уравнений, в который входят значения пере-
менной в узловой и соседних точках. Метод контрольного объема гарантирует вы-
полнение законов сохранения рассматриваемых величин на всей расчетной области 
и для любого контрольного объема. Решение удовлетворяет интегральным балансам 
даже на достаточно “грубых” сетках.

На рис. 2 приведена схема контрольного объема в плоскости (x, y) декартовой си-
стемы координат. Значения переменной фазового поля рассчитываются в исходных 
узлах P.
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Для расчета уравнений (2.4)–(2.5) построим дискретные аналоги с учетом линеа-
ризованных членов. Схема будет явно-неявной, чтобы легче производить компью-
терный расчет.

Проинтегрируем уравнение (2.4) по указанному контрольному объему и по вре-
менному промежутку ∆,t t té ù+ê úë û:
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С учетом (3.4)–(3.5) уравнение (4.1) преобразуется в:
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Интегрируя, получаем:
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Заменим производные на центрально-разностные аналоги:
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Рис. 2. Контрольный объем на плоскости (x, y)
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И введем следующие обозначения:
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Тогда уравнение (4.3) принимает следующий вид:
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Окончательный двумерный аналога дискретного уравнения можно записать 
в виде:

	 ϕ ϕ ϕ ϕ ϕP P E E W W N N S Sa a a a a b= + + + + ,	 (4.8)

где
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5. Численные эксперименты. В этом разделе представлены следующие численные 
эксперименты для предложенной схемы: тест на сходимость, тест на устойчивость, 
влияние числа Кана, начальных и граничных условий на энергию и эволюцию систе-
мы. Если не указано иное, в расчетной области 0,1 0,1Ω é ù é ù= ´ê ú ê úë û ë û  используется равно-
мерная сетка размером 128 128´ , временной шаг 510t∆ -= .

5.1°.  Тест на сходимость. Начнем с проверки пространственной и временной схо-
димости предлагаемого метода. Для получения скорости пространственной сходимо-
сти, выполнен ряд симуляций со все более мелкой равномерной сеткой 1 / 2nh =  для 
n � � � � �= 6 7 8 9, , ,  в  расчетной области. Начальное условие в  области Ω принимает вид: 
( )ϕ , ,0 /x y f f

¥
= , где ( ), sin10 cos10f x y x y= , а  f

∞
  – максимальное значение f  

в области Ω. Для каждого расчета численное решение вычислялось до момента вре-
мени T = 0.001 с шагом ∆ 610t -= , число Фурье  3Fo 10-= , число Кана   4Cn 10-= . По-
скольку для задачи не существует аналитического решения в замкнутой форме, в ка-
честве эталонного рассматривалось численное решение ϕref , которое получается 
с использованием очень мелких пространственных и временных сеток. Для вычисле-
ния ϕref  используется сетка 1024 1024´  и ∆ 710t -= . Погрешность сетки определяется 
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как дискретная 2l -норма разности между этой сеткой и средним значением соседних 
с ней ячеек эталонного решения следующим образом:

	 ( )ϕ ϕ ϕ ϕ ϕref ref ref ref
, , 1, 1 , 1 1, , 4h ij h ij p q p q p q p qe - - - -= - + + +

Здесь p и q – соответствующие индексы мелкой сетки. Скорость сходимости опре-
деляется как отношение последовательных ошибок: log2 2e eh h( ).

Ошибки и скорости сходимости, полученные с использованием этих определений, 
приведены в  табл.  1. Наблюдается точность второго порядка по пространству, как 
и ожидалось из дискретизации.

Чтобы рассчитать скорость сходимости для временной дискретизации, зафикси-
руем размер пространственного шага   1 / 256h=  и  выберем набор уменьшающихся 
временных шагов ∆ ∆ ∆4 4 46.25 10 , 3.125 10 , 1.563 10t t t- - -= × = × = × . Численные реше-
ния вычисляются до времени T = 1. Погрешность 2l  – нормы сетки рассчитывается 
как ∆ ∆ϕ ϕref

, , .t ij t ij ije = -  Здесь ϕref  – эталонное численное решение, полученное с не-
большим шагом по времени ∆ 510t -= . Ошибки и скорости сходимости, полученные 
с использованием этих определений, приведены в табл. 2. Как и ожидалось, исходя 
из дискретизации, наблюдается точность первого порядка по времени.

5.2°.  Сравнение с точным решением. В [15] можно найти семейство точных одно-
мерных стационарных периодических решений системы Кана–Хилларда, выражен-
ное как

	 ( ) ( ) ϕ
γ 0

1 11 sn ,
2 1e x x x

æ ö+ - ÷ç ÷ç= - - ÷ç ÷ç + ÷çè ø

 



,	 (5.1)

где sn(x,s)  – эллиптическая синусоидальная функция Якоби, которая является пе-
риодической для 0 ≤ s < 1. Это семейство решений зависит от свободного параметра 
 ∈ [0, 1], который определяет амплитуду, период и эллиптический модуль решений, 
и от 0x , влияющего на фазовый сдвиг. Более подробно о точном решении можно по-
читать в [14].

Для этого тестового случая были установлены значения 0.01= , 0 0x =  
и  γ ε2 0.001º = , что соответствует значениям представленной численной схемы 

 Fo 1,Cn 0.001= = . Рассмотрена вычислительная область, равная двум длинам волны 
точного решения x Î[0; 1.32], разбитая на N = 133 ячейки, шаг по времени ∆ 610t -= , 
использовались периодические граничные условия. Конечное время моделирования 
составляет T = 10. Сравнение численного решения с соответствующими исходными 
данными (то есть точным решением уравнения (2.1)) представлено на рис. 3.

Таблица 1. Ошибки и сходимость схемы для сеток с различным разбиением

Сетка 64 64´ 128 128´ 256 256´ 512 512´

2l -ошибка 25.68 10-× 21.78 10-× 33.8 10-× 47.27 10-×

Порядок 1.67 2.25 2.37

Таблица 2. Ошибки и сходимость схемы для сеток с различными временными шагами. Сетка 
размером 256 256´

∆t 46.25 10-× 43.125 10-× 41.563 10-×

2l -ошибка 31.54 10-× 48.09 10-× 44.03 10-×

Порядок 0.93 1.01
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Сравнение показывает идеальное согласие между точным решением ϕe (5.1), встав-
ленным в качестве начального условия, и численным решением ϕ, показанным при 
T = 10.

5.3°.  Влияние числа Кана. Рассмотрим, как влияет число Кана на энергию и эво-
люцию системы. Число Кана характеризует толщину межфазной оболочки, а также 
химическую скорость притяжения фаз. Дискретный функционал энергии (2.1) вы-
числяется по формуле [16]:

	 ( ) ( ) ( ) ( )
2 2 2

1, , 11 1 2
Nx Ny

ij i j ih j i j iji j
x yF ε

ϕ ∆ ∆ ϕ ϕ ϕ ϕ ϕ+ += =

é ùæ öê ú÷ç= + - + - ÷ç ÷çê úè øê úë û
å å

Нормализованная дискретная полная свободная энергия определяется как 
  N h ht= ( ) ( )0 . Дискретная общая масса равна ∆ ∆ ϕ

1 1

Nx Ny

iji j
x y

= =å å . Начальное усло-
вие задается случайным распределением ( ) ( )ϕ , ,0 Rand 1,1x y = - , граничные усло-
вия – Неймана, число Фурье  3Fo 10-= , шаг по времени 510t∆ -= .

На рис.  4 показана эволюция разделения фаз для чисел Кана Cn = 10–4, 3⋅10–5, 
2⋅10–5 в моменты времени T = 0.1, 1, 10. Численное решение показало, что уменьше-
ние числа Кана (коэффициента ε) приводит к снижению химической скорости при-
тяжения фаз.

На рис. 5 представлены графики зависимости нормализованной полной свобод-
ной энергии  N от времени для разных чисел Кана. Из рис. 5 видно, что для всех слу-
чаев полная дискретная энергия не возрастает. При уменьшении числа Кана, энер-
гия уменьшается быстрее. При числе Кана 5Cn 2 10-= ×  скорость притяжения фаз 
стремится к нулю, и система быстро приходит в устойчивое состояние (см. рис. 4,в), 
таким образом, полная энергия стабилизируется. Также для каждого случая рассчи-
тана общая масса системы, выполняется условие сохранения массы, что подтвержда-
ет консервативность численной схемы.

5.4°.  Созревание Оствальда. Исходное состояние системы играет значительную 
роль на развитие расслоения. Так, если одной фазы значительно больше, чем дру-

0  0.66  1.32
x

ϕ

1

0

–1

ϕ(x, t = 10)
ϕϵ(x, t = 10)

Рис. 3. Сравнение точного и приближенного решений для одномерного случая в момент времени T = 10
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гой, то уравнение Кана–Хилларда может показать явление, известное как созревание 
Оствальда (переконденсация), когда неосновная фаза образует сферические капли, 
а  более мелкие капли поглощаются путем диффузии в  более крупные. В  реальных 
экспериментах наблюдается расслоение изначально смешанной жидкости на доме-
ны. Сегрегированные домены растут со временем по степенному закону. Это закон 
Лифшица–Слёзова [17], который был строго доказан для уравнения Кана–Хилларда 
и наблюдался в численном моделировании и реальных экспериментах [18].

На рис. 6 представлено сравнение развития системы при разных начальных усло-
виях. В  первом случае смесь симметрична ( ) ( )ϕ , ,0 Rand 1,1x y = - , то есть обе фазы 
имеют одинаковую долю. А  во втором случае представлена несимметричная смесь 
( ) ( )ϕ , ,0 Rand 1,0x y = - , когда элементов ϕ =−1 больше. Число Кана 4Cn 10-= , число 

Фурье  3Fo 10-= , шаг по времени ∆t = −10 5.
Численное моделирование наглядно показывает эффект созревания Оствальда для 

второго случая: ( ) ϕ ,tx  быстро развивается до конфигурации из множества мелких 

Рис. 4. Эволюция разделения фаз для чисел Кана (а–в)  4Cn 10-= , 53 10-× , 52 10-×  в моменты времени 
T = 0.1, 1, 10
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капель, которые подвергаются оствальдовскому созреванию  – маленькие “капли” 
неосновной фазы в уравнении Кана–Хилларда исчезают только для того, чтобы ре-
абсорбироваться более крупными каплями той же фазы. В результате “выживают” 

Рис. 5. Зависимость полной свободной энергии  N от времени для разных чисел Кана: 1–4: 
Cn = 10–4, 5⋅10–5, 3⋅10–5, 2⋅10–5

1

0.5

0
5 10t

εN

1

2

3

4

а

б

t = 1 t = 3 t = 10

t = 1 t = 3 t = 10

1

0

–1

1

0

–1

Рис. 6. Эволюция разделения фаз а) симметричной и б) несимметричной жидкостей в моменты времени 
T = 1, 3, 10
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только несколько крупных капель, в конечном итоге система будет состоять только 
из одной капли, что соответствует экстремальным эффектам конечного размера [18].

5.5°.  Влияние граничных условий. Рассмотрим, как влияют на эволюцию системы 
граничные условия. Рассматривается симметричная двухфазная смесь, число Кана 

4Cn 10-= , число Фурье  3Fo 10-= , шаг по времени ∆t = −10 5. В первом случае рассма-
тривались граничные условия Неймана, во втором случае – граничные условия Ди-
рихле � t( ) = −

∂�
1.

На рис. 7 показана эволюция разделения фаз с граничными условиями Дирихле 
и Неймана соответственно. При граничном условии Дирихле � t( ) = −

∂�
1 положи-

тельные фазы собираются дальше от границы. При граничном условии Неймана 
фазы сохраняют угол контакта на границе 90°.

Заключение. В  данной статье представлен консервативный численный алгоритм 
и построена численная схема на основе метода контрольного объема для линеаризо-
ванной системы уравнений Кана–Хилларда.

Путем численного моделирования показана консервативность и сходимость пред-
ложенной численной схемы. Показано, что уменьшение числа Кана приводит к сни-
жению химической скорости притяжения фаз и, следовательно, к меньшей интен-
сивности роста сегрегированных доменов.

Смоделировано явление созревания Оствальда, когда при неравномерном распре-
делении фаз в начальный момент времени (одной фазы значительно больше) неос-
новная фаза образует сферические капли, а более мелкие капли поглощаются путем 
диффузии в более крупные.

Исследовано влияние граничных условий на эволюцию распределения фаз двух-
фазной жидкости. Численные результаты указывают на потенциальную полезность 
предложенного метода для расчета динамики дисперсных систем.
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Рис. 7. Эволюция разделения фаз для граничных условий а) Неймана и б) Дирихле в моменты времени 
T = 1, 3, 10
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This paper presents a  conservative numerical algorithm for solving the Cahn–Hillard 
equation. A method for linearizing the Cahn–Hillard equation is proposed, and a nu-
merical scheme is constructed based on the control volume method. The implementation 
of the proposed numerical algorithm is described in detail. The conservativeness of the 
proposed discrete scheme is verified by numerical simulation. Numerical experiments 
were carried out.
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