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При решении инженерных задач часто возникает необходимость знания физиче-
ских свойств пористых сред со сложной внутренней структурой. В данной работе 
предложена методика численного моделирования теплопроводности подобного 
рода тел, включающих не проводящие тепло круглые включения. Данная мето-
дика позволяет вычислять поля температур и  тепловые потоки, а  также другие 
необходимые для приложений параметры. Одним из таких востребованных 
практикой параметров является эффективный коэффициент теплопроводности, 
который зависит от объемного содержания теплоизолированных ослаблений 
и  их взаимного расположения. Основой приведенных исследований является 
предлагаемый в работе непрямой метод граничных элементов, базирующийся на 
предварительно вычисленных аналитических решениях, по которым произво-
дится разложение. Для верификации разработанных методов в работе приведено 
сравнение с результатами других авторов, которое показало достаточно хорошее 
совпадение.
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1. Введение. Вопрос распространения тепла в неоднородных средах нередко воз-
никает в прикладных задачах различных областей промышленности. К примеру, 
в химической отрасли для поддержания реакций может потребоваться рассчитать 
подвод тепла в телах со сложной внутренней структурой. Задачи теплопроводности 
пористых сред находят свое применение при моделировании теплоизоляционных 
материалов, при анализе поведения пород в горнодобывающем деле или при пред-
сказательном моделировании разрушения конструкций с  внутренними дефек-
тами в аэрокосмической или атомной промышленности. Для решения подобных 
задач существуют разные подходы. Обзор некоторых из них можно найти, напри-
мер, в  [1–3]. Так как в  инженерных расчетах чаще всего среда рассматривается 
гомогенной, встает вопрос о вычислении эффективных параметров гетерогенной 
среды, способных свести моделирование к привычным формулам. Для их анали-
тического вычисления обычно или пользуются методами осреднения, или сводят 
конфигурацию геометрии среды к некоторой периодической структуре [4–7]. Та-
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кой подход возможен в ограниченном числе постановок задач и позволяет полу-
чить примерные зависимости эффективных параметров среды от конфигурации, 
но не дает возможности с  высокой точностью рассматривать локальное поведе-
ние физических полей (например, поля температуры) в  материале. Ввиду этого 
в настоящее время для подобных задач активно развиваются численные методы, 
самым популярным из которых можно считать метод конечных элементов [8]. Од-
нако в случае пористых сред на численные методы помимо обычных требований 
точности накладываются дополнительные условия по скорости вычислений. Это 
приводит к необходимости рассматривать альтернативные высокопроизводитель-
ные методики.

В данной работе предложен численный метод моделирования сред с  теплоизо-
лированными областями. Он относится к  непрямым методам граничных элемен-
тов. Метод использует предварительно найденные базовые аналитические решения 
модельных задач теплопроводности. Данный метод позволяет получить решение 
в форме конечного ряда разложения по базовым функциям. Это позволяет провести 
полное исследование поля температур, в том числе вычислить эффективный коэф-
фициент теплопроводности пористой среды. Точность метода проверена сравнением 
с  результатами других авторов. Разработанные авторами методы, имеющие анало-
гичную математическую основу и примененные для анализа сред с большими систе-
мами трещин, подробно описаны в [9–11].

2. Постановка задачи. Рассмотрим стационарную плоскую задачу теплопровод-
ности бесконечной теплопроводящей среды, ослабленной теплоизолированными 
отверстиями под действием теплового потока на бесконечности (рис. 1).

Все отверстия имеют одинаковый радиус. На бесконечности действует тепловой 
поток с  плотностью q¥. Выбором величины теплового потока на окружностях 0q  
можно дополнительно моделировать стоки и источники тепла. В случае теплоизоли-
рованных пор полагаем 0 0q = . Запишем уравнение теплопроводности для стацио-
нарного поля температур без источников тепла и граничные условия, используя за-
кон теплопроводности Фурье:

q

Рис. 1. Рассматриваемая конфигурация среды
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Здесь k  – коэффициент теплопроводности материала, Γ – граница рассматривае-
мой многосвязной области. Базовыми размерными величинами задачи являются: 
R [м] – радиус разреза; k  [Вт/м⋅K] – коэффициент теплопроводности; q¥ [Вт/м2] – 
плотность теплового потока на бесконечности. Далее для верификации с аналитиче-
скими решениями для построения графиков будут использоваться безразмерные ве-
личины:
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Далее для упрощения записи знак тильды, означающий безразмерное значение 
величины, не пишется. Все величины, связанные с  расстоянием, будут отнесены 
к радиусу одного отверстия. Решение задачи представимо в виде суммы двух реше-
ний. Первое является решением задачи о распределении температуры в бездефект-
ном материале под действием теплового потока, приложенного на бесконечности. 
Поле температуры в этом случае может быть определено следующим образом:

	 ( ), q yT x y
k

¥
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Вторая краевая задача рассматривается при наличии пор. В ней тепловой поток на 
бесконечности равен нулю. Взяв исходный вектор плотности теплового потока с об-
ратным знаком и рассмотрев в каждой точке границы его нормальную к границе со-
ставляющую, получим граничные условия для второй задачи. Сумма решений двух 
задач будет являться решением исходной задачи. Решение второй задачи ищем в виде 
конечного функционального ряда по некоторым точным аналитическим решениям 
модельных краевых задач теории теплопроводности. Данный метод и его усовершен-
ствования для решения задач теплопроводности и линейной упругости тел с трещи-
нами были использованы авторами в  работах [9–11]. Для построения модельного 
решения рассмотрим задачу элементарного разрыва температуры величины ( )D x  на 
отрезке длины 2h, который в  дальнейшем будем называть граничным элементом. 
Перейдя к  функции комплексного переменного и  воспользовавшись свойствами 
интегралов типа Коши, получим следующее:
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Для определенных видов функциональной зависимости ( )D x  интеграл может быть 
взят аналитически [11]. В  данной работе плотность интеграла берется в  виде кон-
станты ( )D x c= . В этом случае модельное решение берется в виде:
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Далее граница области приближается набором прямолинейных отрезков одинако-
вой длины. Решение задачи представляется в виде суммы элементарных скачков на 
каждом из разрезов с неизвестными постоянными коэффициентами функций ( )D x , 
своими для каждого скачка. Заметим, что имея аналитическое решение модельной 
задачи, можно для любой точки среды найти значение температуры и плотности теп-
лового потока, создаваемое одним элементом в своей локальной системе координат. 
Для того чтобы отыскать коэффициенты, получим замкнутую систему линейных ал-
гебраических уравнений. Для нахождения коэффициента c каждого элементарного 
разрыва температуры потребуем выполнение граничных условий в центрах всех эле-
ментов, на которые разбита граница. Приравняв к  заданному значению плотность 
теплового потока, создаваемого всеми элементарными разрывами температур в цен-
тре какого-то выбранного граничного элемента, получим одно алгебраическое урав-
нение на величины скачков. В случае рассмотрения величин скачков константами, 
проделав данную операцию для центров каждого отрезка, на которые мы разбили 
разрезы, получим замкнутую систему уравнений.
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Здесь N – количество граничных элементов, ( ),i ix y  – координаты центра элемен-
та, для которого моделируется суммарная величина плотности теплового потока, 
создаваемого всеми элементами, α j  – угол, зависящий от взаимного расположения 
рассматриваемой пары элементов. Для верификации описанного метода рассмотрим 
задачу об одном теплоизолированном отверстии. Для этой задачи имеется точное 
решение, которое можно найти, например, в [12]. Будем сравнивать аналитические 
и численные результаты поля температуры, вычисленные в точках, находящихся на 
расстоянии 1.01 радиуса от центра отверстия, в зависимости от полярного угла.

Сравнение аналитических и численных результатов поля температуры для задачи 
об одиночном теплоизолированном отверстии при его разбиении на 20 элементов на 
расстоянии 1.01 радиуса дает следующие результаты (рис. 2). Относительная ошибка 
для посчитанных численно значений не превышает 1%. Такой подход позволяет на-
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Рис. 2. Аналитические и численные результаты поля температуры верификационной задачи
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ходить распределение искомых полей в любой точке среды с малыми вычислитель-
ными затратами и достаточной для приложений точностью.

Далее рассмотрим исходную задачу о  теплопроводности пористого материала, 
считая все включения теплоизолированными (рис. 1). Получив описанным методом 
решение и выделив в бесконечной среде некоторую репрезентативную область в виде 
прямоугольника, можем вычислить эффективный коэффициент теплопроводности, 
полагая:

	 eff
2 1

q lk
T T

¥

=
-

	 (2.7)

Здесь l  – расстояние по вертикали между двумя точками, в которых вычисляется 
разница температур. Для анализа рассмотренных конфигураций введем пористость, 
аналогично работе [7].

	 p M R
A

=
2
3

2π 	 (2.8)

Здесь p – это пористость, A – площадь репрезентативной области, M  – количе-
ство круглых включений. Разными авторами получены приближенные зависимости 
эффективного коэффициента теплопроводности от пористости материала. Подроб-
ный обзор формул для плоских задач можно найти в [1]. Для верификации методики 
и анализа результатов воспользуемся некоторыми из них. Рассмотрим соотношение, 
представленное в [7]:
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Эта формула может быть использована только для случая малой пористости, как 
и соотношение, полученное в работе [5]:

	 eff
41
3
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Дополнительно используем хорошо известное решение Максвелла для простран-
ственной задачи о среде со сферическими включениями:

	 eff
1
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2
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p
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+
	 (2.11)

Представленный в данной работе алгоритм позволяет рассматривать конфигура-
ции с большей пористостью. Полученные результаты представлены на рис. 3.

Можно заметить, что при малой пористости величина эффективного коэффи-
циента теплопроводности для рассмотренных структур количественно приближа-
ется с достаточной точностью всеми методами. Однако при увеличении пористости 
линейная зависимость от нее не сохраняется. Отсюда следует несколько выводов. 
Во-первых, при моделировании поведения сред со сложной внутренней структурой 
для учета особенностей геометрии ослаблений и  их взаимного влияния требуется 
использовать методы, способные давать решение исходной задачи с  высокой точ-
ностью. Во-вторых, моделирование эффективного коэффициента теплопроводно-
сти подобного рода сред линейными зависимостями оправдано для малых значений 
пористости и  нарушается с  ее ростом из-за существенно нелинейной зависимости 
коэффициента от объемного содержания пор. В расчетах использовалась как перио-
дическая структура пор, так и случайно распределенная. Оказалось, что случайность 
распределения пор круглой формы влияет на характер зависимости эффективного 
коэффициента несущественно.
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Заключение. Разработан непрямой метод граничных элементов, позволяющий до-
статочно эффективно решать стационарные задачи теплопроводности для пористых 
материалов с произвольной геометрией и структурой пор. Работа метода продемон-
стрирована на примере решения плоских задач стационарной теплопроводности 
сред с  непроводящими тепло круглыми включениями. Проведенная верификация 
предложенного численного метода позволяет сделать вывод о  достаточно хорошей 
точности (менее одного процента) при малых вычислительных затратах. Представ-
ление решения в форме конечного ряда по базовым функциям (то есть фактически 
в аналитической форме) позволяет существенно облегчить анализ результатов. Это 
продемонстрировано на примере вычисления эффективных коэффициентов тепло-
проводности пористых сред.

Работа поддержана Междисциплинарной НОШ МГУ им. М.В. Ломоносова “Фун-
даментальные и прикладные исследования космоса”, проект 23-Ш01-01.
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When solving engineering problems, it is often necessary to know the physical properties 
of porous media with complex internal structure. In this paper we propose a technique for 
numerical modeling of heat conduction of this kind of bodies including non-conducting 
circular inclusions. This technique allows to calculate temperature fields and heat fluxes, 
as well as other parameters necessary for applications. One of such parameters demanded 
by practice is the effective thermal conductivity, which depends on the volume content 
of thermally insulated pores and their mutual location. The basis of the above studies is 
the indirect boundary element method proposed in this paper, based on pre-calculated 
analytical solutions, on which the decomposition is performed. In order to verify the de-
veloped methods, a comparison with the results of other authors is given in the paper. It 
showed a fairly good agreement.

Keywords: porous media, effective thermal conductivity, boundary element methods
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