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В приближении модели Феппля–фон Кармана решена задача о деформировании 
круговой пластины сцепленной с  массивным основанием по контуру, совпада-
ющего с границей отверстия в основании, под действием поперечной нагрузки. 
Рассматривались граничные условия двух типов: жесткой и обобщенной упругой 
заделки. Решение получено двумя способами: при помощи разложения в степен-
ные ряды поперечных смещений и продольных усилий, представленных в цилин-
дрической системе координат, а  также численным интегрированием уравнений 
Феппля–фон Кармана, с  последовательным уточнением граничных условий, 
аналогично “методу стрельбы”. Получены выражения для компонент смещения 
круговой пластины. Выявлена роль, вносимая податливостью подложки в изме-
нение формы профиля круговой пластины, действующих продольных усилий 
и изгибающих моментов. Проведено сравнение с другими решениями. Исследо-
ваны области применимости методов.
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1. Введение. В области микро- и наноэлектроники возникают задачи, связанные 
с производством и эксплуатацией сверхтонких элементов. Одной из подобных задач 
является определение параметров деформирования элементов конструкций, исполь-
зуемых в проекционной фотолитографии [1–4]. Возникает необходимость в иссле-
довании механических деформаций и  напряжений в  пластинах различной формы, 
в  том числе круговые пластины. Отдельную трудность представляет корректное 
исследование деформирования тонких пластин, изгиб которых сильно зависит от 
напряжений в срединной поверхности, из-за чего уравнения, описывающие процесс 
деформирования, становятся нелинейными. При исследовании деформирования 
пластин в качестве граничных условий обычно используют условие жесткой задел-
ки, не учитывающие свойства основания, с которым рассматриваемое тонкостенное 
покрытие соединено, оправдывая такое приближение “массивностью” последнего. 
Однако условие жесткой заделки выполняется лишь приближенно. Одним из спо-
собов более корректного описания является использование граничных условий типа 
обобщенной упругой заделки, т.е. пропорциональности компонент смещения и угла 



107ГАНДИЛЯН, УСТИНОВ

поворота в точке заделки действующим в этой точке продольной и поперечной силам 
и изгибающему моменту [5–20].

Среди работ, в  которых учитывается влияние податливости заделки, отметим 
работы, посвященные спектральным задачам колебаний прямоугольных пластин 
[21–25], в том числе с учетом трансверсальной податливости на основе модели Минд-
лина [21], работы, посвященные задачам о потере устойчивости плоской формы рав-
новесия пластин при нагружении в ее плоскости [26–28]. Отметим также решения 
задач о  колебаниях для оболочек с  реперной поверхностью канонической формы 
при учете податливости закрепления контура [29]. В работе [30] получено численное 
решение задачи об изгибе круговой пластины переменной толщины с учетом транс-
версальной податливости на сдвиг методом коллокаций.

В данной работе рассмотрена задача о деформировании круговой пластины под 
действием постоянной поперечной нагрузки, сопряженной с основанием, где усло-
вие сопряжения моделируется с  помощью граничных условий типа обобщенной 
упругой заделки. Целью работы является исследование влияния заделки на пара-
метры деформирования пластины. Получено полуаналитическое решение задачи 
с  помощью разложения в  ряд нормальной компоненты смещения и  продольной 
компоненты усилия. Также рассмотрен численный метод, аналогичный “методу 
стрельбы”, позволяющий получить решения для бóльших значений прогиба. Ре-
зультаты расчетов соответствуют случаю алюминиевой пластины на кремниевом 
основании.

2. Постановка задачи. Геометрия задачи представляет собой пластину толщины h, 
соединенную с основанием, имеющим отверстие радиуса R. Часть пластины, не име-
ющую сцепления с основанием, можно рассматривать как круговую пластину. Вос-
пользуемся цилиндрической системой координат α( , , )r z  (рис. 1), компоненты сме-
щения в срединной поверхности покрытия обозначим: α α α( , ), ( , ), ( , )v r u r w r .

К пластине со стороны отверстия в  основании приложена поперечная нагрузка 
с постоянной интенсивностью constq = . В силу осевой симметрии компонента сме-
щений α( , ) 0v r =  отсутствует, а остальные компоненты зависят только от одной пе-
ременной: ( )u u r= , ( )w w r= . В дальнейшем анализе также используется параметр: 

( )θ
r R

w r
=

¢= -  – угол поворота пластины на контуре заделки.
Для учета влияния основания будут использоваться граничные условия типа обоб-

щенной упругой заделки, т.е. условия пропорциональности угла поворота и продоль-

z

w

u
v

hα

r

Рис. 1. Рассматриваемая система координат
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ного и нормального смещения в точке заделки действующим в этой точке изгибаю-
щему моменту и продольным и поперечным усилиям [5–20].
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где ija  ( ij jia a= ) – матрица податливости, rN  – продольное усилие, rM  – изгибающий 
момент (рис. 2), rzQ  – поперечное усилие, которое в силу симметрии и равномерности 
распределения приложенной нагрузки имеет вид:

	
2rz

qrQ =

3. Модель Феппля–фон Кармана. Основные уравнения. Для исследования деформи-
рования тонких пластин в качестве модели будет использована модель Феппля–фон 
Кармана (напр. [31]), позволяющая учитывать достаточно большие прогибы. Соглас-
но данной модели для рассматриваемого случая осевой симметрии используем урав-
нения, разрешающие задачу относительно прогиба w, тангенциальной и радиальной 
компонент усилий tN , rN :
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где первые два выражения являются уравнениями равновесия, а третье соотношение 
следует из условия совместности деформаций, ν,E  – модуль Юнга и коэффициент 
Пуассона пластины.

Выражения компонент усилий ,r tN N  и момента rM  через компоненты перемеще-
ния есть
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Рис. 2. Конфигурация деформирования круговой пластины:
а) распределение усилий и момента, б) распределение компонент смещений
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Подстановка (3.2) в (3.1) дает
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Далее введем безразмерные величины:
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С помощью введенных безразмерных величин можно получить более информатив-
ные и удобные результаты для анализа поведения круговой пластины, в частности 
прогиб пластины относительно радиуса его основания (процент “выпучивания”). 
Также введенный безразмерный параметр ρ /r R=  будет способствовать быстрому 
решению задачи в рядах, где для граничного условия вместо r R=  используется зна-
чение ρ 1= .

Соответственно уравнения (3.2), (3.3) в безразмерных величинах примут вид
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	 (3.5)
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	 (3.6)

После некоторых упрощений, данные уравнения приводятся к следующему виду:
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В силу допущения равномерности нагрузки, а  также симметрии относительно 
оси z , можно считать, что усилие rN  является симметричной функцией, а  ρ/dw d  – 
антисимметричной функцией от ρ. Следовательно, можно представить данные функ-
ции в виде следующих степенных рядов [31]:
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где ,i iC B  – постоянные коэффициенты, подлежащие определению.
Нормальная компонента смещения получается путем интегрирования:
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Из второго уравнения (3.7) получаем:
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Подстановка (3.8) в первое и третье уравнения (3.7), дает систему уравнений, ре-
шение которой есть:
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где коэффициенты , 3,5,7,...k kB C k =  выражаются через пока еще неизвестные ко-
эффициенты 1 1,B C .

Радиальная компонента смещения, с использованием (3.6) и полученного реше-
ния (3.10), приобретает вид
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Рассмотрим два типа граничных условий:
А)  Граничные условия типа жесткой заделки:



111ГАНДИЛЯН, УСТИНОВ

	
( ) 0

( )( ) 0, 0r R

u R
dw rw R

dr =

=

= =
Þ 

ρ

ρ
ρ

ρ
ρ 1

( 1) 0
( )( 1) 0, 0

u
dww

d =

= =

= = =







	 (3.12)

Б)  Граничные условия в случае обобщенной упругой заделки (2.1), в безразмер-
ных величинах приобретающие вид:
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системы первого и третьего граничных условий (3.13):
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Нормальная компонента перемещений ρ( )w  (точнее неизвестная константа 0C ) 
находится из второго граничного условия (3.13):

	

2

0 31
1,3,5,7,... 1,3,5,7,...

2

32 33
1,3,5,7,...

1 1( 1)
122 3

1
24 3 2

i i
i i

i
iR

p
h

h h hw C C a B
R R R

h Ra i C a
R

ρ

ν

= =

=

éæ ö æ ö æ öê÷ ÷ ÷ç ç ç÷ ÷ ÷= = - = - -ç ç çê÷ ÷ ÷ç ç ç÷ ÷ ÷ç ç çè ø è ø è øêë
ùæ ö æ ö ú÷ ÷ç ç÷ ÷- + +ç ç ú÷ ÷ç ç÷ ÷ç çè ø è ø ú

æ ö÷ç ÷ç ÷ç ÷çè ø
û

å å

å



4. Альтернативные методы решения. В работах [20,33] рассматривались другие мето-
ды решения. Кратко приведем их решения для дальнейшего сравнения.

4.1. Модель пластины без учета продольных усилий (Модель С.  Жермен). В данной 
модели не учитываются продольные усилия, т.е. система уравнений (3.3) редуциру-
ется к одному уравнению (первому из уравнений (3.3) без последнего члена в правой 
части), решение которого с учетом граничных условий упругой заделки (3.13) безраз-
мерных величинах есть
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1
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1
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2

22+
+
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























+ +

( ) (� a h
R

a h
R

h
R

a ��)










−1	 (4.1)

4.1. Мембранная модель. Данная модель предполагает, что влияние продольных 
усилий намного больше, чем влияние усилий, отвечающих за изгиб и последними 
можно пренебречь. При этом в уравнениях для прогиба из уравнений (3.5) отбрасы-
ваются слагаемые, связанные с изгибом. Аналитическое решение получается в пред-
положении постоянства усилий constrN = . Решение с  учетом граничных условий 
(3.13) имеет вид [20]:

	

( )

( )

2
3

2

3 1
23

11

1( )
481

( ) 1
4

1 1
48 (1 )

r

r

r

r

N p Ru
hN

p Rw
hN

R RN p a
h h

ρ
ρ ρ

ν

ρ ρ

ν

-

æ ö÷ç ÷ç= - ÷ç ÷÷ç+ è ø

= -

æ ö æ ö÷ ÷ç ç÷ ÷= +ç ç÷ ÷ç ç÷ ÷ç ç +è ø è ø













	 (4.2)

4.2. Модель Феппля–фон Кармана в  приближении постоянства продольных усилий. 
В отличие от основной модели Феппля–фон Кармана, в данной модели предполага-
ется постоянство продольных усилий constrN = , что приводит к упрощению уравне-
ний (3.5):

	

ρ
ρ ρ ρρ ρ ρ

ρ
ρ

3 23 2

3 2 2

1 1 12 12
2

0 const

r

r
r t r t

d w d w dw p R R dwN
d h h dd d

dN
N N N N N

d

æ ö æ ö÷ ÷ç ç÷ ÷+ - = +ç ç÷ ÷ç ç÷ ÷ç çè ø è ø

+ - = Þ = = =

   





    

	 (4.3)

Аналитическое общее решение для компонент смещений ρ( )w , ρ( )u  в безразмер-
ных величинах имеет вид [20]

	 ( )ρ ρ ρ2
0 0(1 ) 12 12

4 r r
r

N R Np R Rw C I I
hN h h

é ùæ ö æ ö÷ ÷ç çê ú÷ ÷= - + -ç ç÷ ÷ê úç ç÷ ÷ç çè ø è øë û


 


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2 2

1 22

2

2
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2
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2 2 2
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1 48

r
r r

r

r r

N R R Ru p p CN F N
h h hN

R RC N F N
h h

ρ
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ρ

ρ
ρ

æçç= - -çç+ ç

æ öæ ö ÷ç ÷ ÷çç ÷ ÷ +çç ÷ ÷çç ÷ç ÷è øç ÷è ø
æ öæ ö æ ö ÷ç÷ ÷ ÷ç çç÷ ÷ ÷+ ç çç÷ ÷ ÷ç çç÷ ÷ç ç ÷è

çè
ö÷÷÷÷÷ø è ø ø÷÷øç ÷è



 





 

	 (4.4)

где n mF  – гипергеометрическая функция, а параметр C  и величина усилий rN  нахо-
дятся из граничных условий (3.13).

5. Численное решение дифференциальных уравнений. Приведем численный метод 
решения данной задачи, аналогичный “методу стрельбы”. Сведем первые два урав-
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нения модели Феппля–фон Кармана (3.1) с учетом (3.2) к системе дифференциаль-
ных уравнений с двумя неизвестными (компонентами смещений ρ( )u , ρ( )w ):

	

33 2

3 2 2

2 2

22 2

2 2 2

1 1 12
2

112
2

1 (1 )
2

d w d w dw p R
d hd d

R dw du u dw
h d d d

d u du u dw dw d w
d d dd d

ρ
ρ ρρ ρ ρ

ν
ρ ρ ρ ρ

ν
ρ ρ ρ ρ ρρ ρ ρ

æ ö÷ç ÷= - + + +ç ÷ç ÷çè ø
æ öæ ö æ ö ÷ç÷ ÷ ÷ç çç÷ ÷ ÷+ + +ç çç÷ ÷ ÷ç çç÷ ÷ç ç ÷è ø è øç ÷è ø

æ ö- ÷ç ÷= - + - -ç ÷ç ÷çè ø

  

   

     

	 (5.1)

Данную систему можно решить с помощью процедуры численного интегрирова-
ния, начиная от центра пластины и “двигаясь” малыми приращениями (“шагами”) 
в радиальном направлении к границе пластины. Для кругового элемента малого ра-
диуса равного ∆ρ задаются (обычно случайным образом) параметры радиальной де-
формации и кривизны

	
ρ ∆ρ ρ ∆ρ

ρ ρ

2

1 12
,du d wu w

d d= =

æ öæ ö ÷ç÷ç ÷¢ ¢¢÷ ç= =ç ÷÷ çç ÷÷ç ÷çè ø è ø

 

	 (5.2)

В силу симметрии круговой пластины, очевидно

	
ρ

ρ
ρ0 0

0

( 0) 0, 0dwu u w
d

=

æ ö÷ç ¢÷= = = = =ç ÷ç ÷çè ø



 	 (5.3)

Используя формулу конечных разностей для производных, получаем

	
ρ ∆ρ

ρ ∆ρ ∆ρ ∆ρ
ρ1 0 1 1 0 1( ) , dwu u u u w w w

d
=

æ ö÷ç¢ ¢ ¢ ¢¢÷= = = + = = +ç ÷ç ÷çè ø



 	 (5.4)

Подстановка значений 1 1 1 1, , ,u u w w¢ ¢ ¢¢ в систему уравнений (5.1) дает

	
ρ ∆ρ ρ ∆ρρ ρ

2 3

1 12 3
,d u d wu w

d d
= =

æ ö æ ö÷ ÷ç ç÷ ÷¢¢ ¢¢¢ç ç= =÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

 

	 (5.5)

Далее, для следующей точки ρ ∆ρ2=

	 ∆ρ
∆ρ

2 1
1 2 1 1,

u u
u u u u

¢ ¢-
¢¢ ¢ ¢ ¢¢= Þ = + 	 (5.6)

используя численное интегрирование, получим

	 ∆ρ1 2
2 1

( )
2

u u
u u

¢ ¢+
= + 	 (5.7)

Аналогично для компоненты w :

	 ∆ρ ∆ρ
∆ρ

2 1 1 2
1 2 1 1 2 1

( )
,

2
w w w w

w w w w w w
¢¢ ¢¢ ¢¢ ¢¢- +

¢¢¢ ¢¢ ¢¢ ¢¢¢ ¢ ¢= Þ = + = + 	 (5.8)

Подстановка полученных значений 2 2 2 2, , ,u u w w¢ ¢ ¢¢ в  систему уравнений (4.1) дает, 
соответственно, значения 2 2,u w¢¢ ¢¢¢. Используя полученные значения, можно уточнить 
решения, пересчитав компоненты

	
∆ρ ∆ρ

∆ρ ∆ρ

1 2 1 2
2 1 2 1

1 2 1 2
2 1 2 1

( ) ( )
,

2 2
( ) ( )

,
2 2

u u u u
u u u u

w w w w
w w w w

¢¢ ¢¢ ¢ ¢+ +
¢ ¢= + = +

¢¢¢ ¢¢¢ ¢¢ ¢¢+ +
¢¢ ¢¢ ¢ ¢= + = +

	 (5.9)
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Подстановка данных значений в систему уравнений (5.1) дает более точные значения 
2 2,u w¢¢ ¢¢¢. Далее аналогичным образом находим значения , , ,i i i iu u w w¢ ¢ ¢¢ 3,...,i n= , где 
ρ ∆ρ ρ, 1i i ni a == × =  соответствует граничному условию. Для выбора приемлемого 
шага ∆ρ воспользуемся следующим алгоритмом: определим значение nw ¢ при двух за-
данных шагах ∆ρ ∆ρ, 2, и  если их разница меньше заданной точности ε, т.е. 

∆ρ ∆ρ ε, , /2n nw w¢ ¢- < , то в качестве приемлемого шага будем принимать ∆ρ 2.
Также можно применить известные методы для решения систем дифференциаль-

ных уравнений 1-го порядка. Для этого приведем уравнения (5.1) к  такой системе 
с помощью следующей замены:

	 1 2 3 4, , ,y w y w y u y u¢ ¢¢ ¢= = = =   

Полученная система дифференциальных уравнений 1-го порядка примет вид:
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с начальными условиями:
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Классический метод Рунге–Кутта 4-го порядка для полученной системы будет 
иметь вид:
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2 2 ; 1,2,3,4, 1,... 1,
6

i j i

j j i i i i
i i

y k

y y k k k k i j n+

+

= + + + + = = -

где при ρ ρ ∆ρ1 1j n n= -= + = .
Полученное численное решение будет считаться корректным, если оно достаточ-

но точно соответствует первому и третьему граничному условию (3.13) (или в случае 
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жесткой заделки (3.12)), в противном случае, берем другие начальные условия (5.2) 
и  повторяем те  же процедуры. В  качестве критерия точности возьмем евклидовую 
норму, т.е. для не нулевых граничных условий (3.13) наилучшим решением числен-
ного метода будет то, которое удовлетворяет условию

	 min
( )

  u h
R

a N a M a Qr r rzρ = −
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

















→ 0	 (5.10)

Соответственно, для нулевых граничных условий (т.е. при 0ija = ):

	 ( ) ρ

ρ
ρ

ρ

2
2

1
( )min ( 1) 0dwu

d =

é ùæ öê ú÷ç ÷ê ú= + ®ç ÷ç ÷çê úè øê úë û



 	 (5.11)

Если для данного численного метода в качестве начальных условий (5.2) использо-
вать значения, вычисленные с помощью модели Феппля–фон Кармана в рядах, то 
можно заметить, что даже для большого количества слагаемых ряда решения с помо-
щью численного метода и метода в рядах могут отличаться на границе, особенно при 
достаточно большом значении интенсивности поперечной нагрузки p. На рис. 3, 4 
изображены зависимости ρ ρ( ), ( )u w ¢  с  учетом и  без коэффициентов податливости 
подложки при значении величины 42 10p -= × .

Рис. 3. Компонента смещения ρ( )u  с учетом (а) и без учета (б) податливости

а б
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Рис. 4. Значения производной смещения ρ( )w ¢  с учетом (а) и без учета (б) податливости
 

а б

Численный мет
Модель Ф.К. в рядах n = 40
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Из рис.  3, 4 видно, что при решении с  помощью численного метода, значения 
ρ ρ( ), ( )u w ¢  в окрестности границы не совпадают со значениями решения, полученно-

го с помощью модели Феппля–фон Кармана в рядах.
Для получения достаточно точного решения можно применить следующий алго-

ритм: в качестве начальных условий (5.2) возьмем значения, полученные с помощью 
решения в рядах, и, выполняя алгоритм численного метода в указанной окрестности 
начальных условий (рис. 5), получим решение задачи, с достаточной степенью точ-
ности удовлетворяющее условию (5.10) (или в случае жесткой заделки (5.11)). Дан-
ный алгоритм относиться к  алгоритмам типа “предиктор–корректор” (предсказа-
ние–исправление).

Также для поиска значения начальных условий при наличии некоторых решений 
задачи, можно построить интерполяционный полином из известных начальных дан-
ных, затем провести экстраполяцию (рис. 6) и, “двигаясь” вдоль экстраполирован-
ной кривой с использованием критерия (5.10) (или в случае жесткой заделки (5.11)), 
подобрать новое приближение начальных условий.

Однако представленный численный метод также не лишен недостатков. При 
больших значениях интенсивности поперечной нагрузки 4/ 2 10p q E -= > × , что 
соответствует прогибу 19...20%  от радиуса круговой пластины, решение с помо-
щью численного метода становится сильно “чувствительным” к начальным усло-
виям (при этом шаг ∆ρ должен быть 410-< ), и для нахождения оптимального реше-
ния необходимо достаточно большое количество вычислительных мощностей, 
а следовательно, и больше времени на поиск соответствующего начального условия 
и расчет.

На рис. 7 построены графики компоненты смещения ρ( )w  с учетом и без податли-
вости подложки при значении величины 42 10p q E -= = ×  для разных методов, в том 
числе приведенного численного метода.

Начальное условие,
полученное из решения
в рядах

Рис. 5. Выделенная окрестность начальных условий для поиска оптимального решения задачи
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6. Результаты расчетов; сравнение результатов, полученных различными методами. 
В  расчетах отношение толщины пластины к  радиусу принималось: / 1 / 100h R =  
Значения модуля Юнга и коэффициента Пуассона для пластины принимались соот-
ветствующие свойствам алюминия 70E =  ГПа, ν 0.35= . В качестве коэффициентов 
упругой заделки принимались значения, соответствующие пластине алюминия ука-
занной геометрии, сопряженной с кремниевым основанием:

	 11 12 21 22 13 23 330, 0, 010, 1.7, 12,a a a a a a a== == = ==

Данные значения коэффициентов податливости для рассматриваемого случая 
были получены в работе [20].

Для представления результатов введены следующие обозначения:
•  S ZX -  – решение, полученное с помощью модели С. Жермен;

Рис. 6. Интерполяция и экстраполяция по известным начальным данным при различных значениях 
интенсивности поперечной нагрузки p
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u ′(ρ = 0)~

Рис. 7. Графики компоненты смещения ρ( )w  с учетом (а) и без учета (б) коэффициентов податливости ija  
при 42 10p -= ×

Модель Ф.К. в рядах n = 3
Модель Ф.К. в рядах n = 40
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•  MembranX  – решение, полученное с помощью мембранной модели;
•  KarmanX  – решение, полученное с помощью модели Феппля–фон Кармана при 

постоянных продольных усилиях;
•  SeriesX  – решение, полученное с помощью модели Феппля–фон Кармана в ря-

дах;
•  NumX  – решение, полученное с помощью модели Феппля–фон Кармана, с ис-

пользованием численного метода;

•  δ
0

Karman Karman

Karm
m

a
ar n

n
K a

( )
100%X X X

X
×=

-
 – относительная разность решений, получен-

ных с помощью модели Феппля–фон Кармана при постоянных продольных усилиях 
с учетом и без учета податливости основания;

•  δ Series Series
Series

Series

0( )
100%X X X

X
-

×=   – относительная разность решений, полученных 

с помощью модели Феппля–фон Кармана в рядах с учетом и без учета податливости 
основания.

Для значений безразмерной величины интенсивности поперечной нагрузки:
8 53 10 ,..., 3 10qp

E
- -= = × ×  были вычислены значения безразмерных величин про-

гиба в центре пластины ρ( 0)w =  (табл. 1), момента на краю пластины rM  и величины 
растягивающего усилия rN  (табл. 2, 3) при граничных условиях типа обобщенной 
упругой заделки, а также жесткой заделки ( 0ija = ).

Из данных, представленных в таблицах, следует, что для достаточно малых значе-
ний интенсивности поперечной нагрузки p q E=  модели С. Жермен, Феппля–фон 
Кармана при constrN = , а также модель Феппля–фон Кармана в рядах хорошо со-
гласуются в отличие от мембранной модели. Также при сравнении методов решений 
задачи отметим, что при увеличении значения интенсивности поперечной нагрузки 
p решения методом Феппля–фон Кармана при constrN = , Феппля–фон Кармана 
в рядах, а также мембранной модели качественно близки, в отличие от метода Софи 
Жермен, где при 710p ->  данное приближение уже неприменимо.

Однако также стоит подчеркнуть, что при увеличении p решение в рамках модели 
Феппля–фон Кармана при constrN =  и полученное в рядах для constrN ¹  отлича-
ются, причем при 53 10p -= ×  разница значения прогиба в центре ( ρ( 0)w = ) уже до-
стигает порядка 20%, из чего можно сделать вывод, что уже в данном случае влияния 
непостоянства продольных сил rN  существенен.

Один из главных вопросов при решении задачи с помощью модели Феппля–фон 
Кармана в  рядах заключается в  определении достаточного количества членов ряда 
для корректного решения задачи. В качестве критерия оптимального количества сла-
гаемых ряда можно использовать нестрогий технический подход, заключающийся 
в том, что если разница значений нормальной компоненты смещения в центре про-
гиба ρ( 0)w =  при решении задачи с n числом слагаемых ряда и с  1n +  числом слагае-
мых меньше заданной точности ε, т.е. ε1n nw w +- <  , то в качестве решения можно 
принять ряд с  1n +  слагаемыми.

Недостатком решения задачи с помощью модели Феппля–фон Кармана в рядах 
является увеличение необходимого числа членов ряда, а следовательно, увеличение 
времени расчета и  накапливание ошибок с  ростом p q E= . Это становится суще-
ственным при числе слагаемых 50n > , особенно для случая обобщенной упругой за-
делки.
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При p q E= > −10 5, что соответствует прогибу 8...10%  от радиуса пластины, 
необходимое число слагаемых составляет 40n > .

Приведенные расчеты свидетельствуют о том, что учет влияния коэффициен-
тов податливости приводит к  увеличению значений нормальной компоненты 
смещения и  уменьшению изгибающего момента и  продольных усилий на краю 
пластины вне зависимости от используемой модели. Для прогибов >3% от радиу-
са пластины можно заметить, что значения изгибающего момента на краю пла-
стины с учетом и без учета податливости основания отличаются более чем в 10%. 
Также можно заметить, что результаты, полученные с помощью модели Феппля–
фон Кармана в рядах, начинают отличаться от результатов, полученных с помо-
щью численной модели, при поперечных нагрузках, соответствующих прогибам 

7...8%  от радиуса пластины, что указывает на необходимость большего числа 
слагаемых для модели Феппля–фон Кармана в  рядах для получении более точ-
ного результата.

Заключение. Рассмотрена задача о  деформировании круговой пластины, сопря-
женной с подложкой, под действием равномерной поперечной нагрузки. Для моде-
лирования сопряжения пластины с  основанием используются граничные условия 
типа обобщенной упругой заделки, т.е. линейной связи усилий, изгибающего момен-
та на краю пластины с компонентами смещений и углом поворота.

Решение задачи получено с помощью модели Феппля–фон Кармана, где исполь-
зуется метод разложения в  степенные ряды компонентов нормального смещения 
и продольного усилия, представленных в цилиндрической системе координат. Про-
ведено сравнение полученного решения с известными решениями [20, 31], с учетом 
и  без влияния основания. Также предложен численный метод, соответствующий 
методу стрельбы.

Численные результаты получены для пластины из алюминия на кремниевом осно-
вании. Проведено сравнение величин прогиба в центре пластины, продольного уси-
лия и изгибающего момента на краю пластины, с учетом и без граничных условий 
упругой заделки. Показано, что при поперечной нагрузке, соответствующей проги-
бам более 5% от радиуса пластины, разница в значениях изгибающего момента на ее 
краю, посчитанная с учетом и без учета податливости заделки, превышает 10%, что 
показывает необходимость учета податливости подложки.

При сравнении результатов, полученных с  помощью указанных моделей полу-
чено, что при небольшой поперечной нагрузке, соответствующей прогибу до 0.5% 
от радиуса пластины, все величины, посчитанные с  помощью указанных моделей, 
практически совпадают, за исключением мембранной модели. При увеличении на-
грузки данные, полученные с помощью модели С. Жермен, начинают существенно 
отличаться от данных, посчитанных с помощью остальных моделей, которые в свою 
очередь качественным образом сходятся. Далее увеличивая нагрузку, соответствую-
щей прогибу порядка 3% от радиуса пластины, значения прогиба в центре пластины 
при использовании модели Феппля–фон Кармана в  предположении постоянства 
продольных усилий, а также модели Феппля–фон Кармана в рядах начинают суще-
ственно различаться, и чем больше поперечная нагрузка, тем больше будет различие. 
Определены ограничения использования модели Феппля–фон Кармана в  рядах. 
Кроме того, показано, что с  помощью совместного использования полуаналити-
ческого метода и предложенного численного метода можно получить более точное 
решение данной задачи.

Работа выполнена при финансовой поддержке гранта РНФ №  23-19-00866 (для 
КБУ).
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Deformation of a Thin Circular Plate Fixed along the Contour to the Substrate
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In the approximation of the Foppl–von Karman model, the problem of deformation of 
a circular plate coupled to a massive substrate along a contour coinciding with the bound-
ary of a hole in the substrate under the action of a transverse load is solved. Boundary 
conditions of two types were considered: rigid and generalized elastic embedding. The 
solution is obtained in two ways: by decomposing into power series the transverse dis-
placements and longitudinal forces represented in a cylindrical coordinate system, as well 
as by numerical integration of the Foppl–von Karman equations, with successive refine-
ment of boundary conditions, similar to the “shooting method”. Expressions for the dis-
placement components of a circular plate are obtained. The role played by the compliance 
of the substrate in changing the profile shape of the circular plate, the acting longitudinal 
forces and bending moments has been revealed. A comparison with other solutions has 
been made. The fields of applicability of the methods are investigated.

Keywords: thin plate, Foppl–von Karman equations, boundary conditions of the general-
ized elastic embedding type
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