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В работе рассмотрена задача о  максимизации значения первой собственной 
частоты для функционально-градиентного материала в  зависимости от закона 
изменения модуля Юнга. При этом предполагается, что имеется ограничение на 
среднее интегральное значение модуля Юнга. Используя метод конечных эле-
ментов для численного решения двумерной осесимметричной задачи о свобод-
ных колебаниях цилиндра, показано влияние переменных свойств материала на 
значение первой собственной частоты. С помощью методов вариационного ис-
числения на основе общей постановки задачи для неоднородного упругого изо-
тропного тела получено условие оптимальности. Отмечено, что левая часть этого 
условия имеет квадратичную форму. В  общем случае задача поиска оптималь-
ного закона изменения модуля Юнга является существенно нелинейной и для ее 
решения необходимо использовать специальные численные методы. Используя 
полученное условие оптимальности, рассмотрены три частные задачи: об изгиб-
ных колебаниях круглой сплошной пластины, продольных колебаниях стержня 
и радиальных колебаниях сплошного тонкого диска с учетом соответствующих 
гипотез. Для всех задач получены оптимальные законы изменения модуля Юнга 
и функции перемещения в аналитическом виде. В частности, в задаче для дис-
ка предложено представление для радиальной компоненты поля перемещения, 
которое описывается линейным законом. Показано, что в этом случае соответ-
ствующие радиальная и тангенциальная компоненты тензора напряжений равны 
между собой. Из уравнения движения и граничного условия на внешней границе 
найдена искомая функция изменения модуля Юнга по радиальной координате 
в  аналитическом виде. Получено аналитическое выражение для определения 
значения собственной частоты, соответствующее найденному решению. Про-
ведена оценка точности этой формулы путем сравнения с численным решением, 
полученным с помощью метода конечных элементов в пакете FlexPDE. Прове-
дено сравнение значений собственной частоты для диска из однородного и неод-
нородного материала.
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1. Введение. Одними из современных материалов являются функционально-гра-
диентные материалы (ФГМ). Главной особенностью ФГМ является изменение его 
свойств по пространственным координатам по определенным законам. Характер их 
изменения зависит от специфики конкретной практической задачи для ФГ объекта. 
Одним из преимуществ ФГМ по сравнению с обычными многослойными компози-
тами является существенное снижение вероятности появления различных дефектов 
типа расслоения или трещин [1, 2]. В зависимости от составляющих ФГМ использу-
ются в машиностроении, электротехнике, акустике, биомеханике и т.п. [3–5]. Также 
находят применение многофазные материалы с переменными свойствами, которые 
изменяются по всему объему тела [6, 7]. Например, в биомедицине используются ма-
териалы с градиентной пористостью, которые позволяют уменьшать вес и плотность 
имплантата, сохраняя при этом оптимальные значения модуля упругости.

В связи со стремительным развитием аэрокосмической промышленности, судо-
строения и биомедицины количество работ, посвященных проблемам оптимизации 
конструкций, неуклонно растет в  течение последних 50  лет. Переход от решения 
одномерных задач к  рассмотрению более общих вопросов оптимального управле-
ния стал возможен во многом благодаря развитию аппарата математических методов 
оптимизации и ЭВМ. Тем не менее, большинство работ в области оптимального про-
ектирования посвящено вопросам отыскания оптимальных и  равнопрочных форм 
и структуры упругих тел, что, в свою очередь, приводит к рассмотрению задач мини-
мизации веса и оптимизации их механических характеристик [8–10]. Представляют 
интерес не только прикладные приложения проблем оптимизации конструкций, но 
и теоретические вопросы. Исследование новых классов задач, учет различных меха-
нических характеристик, разработка эффективных методов оптимизации, а  также 
решение возникающих нелинейных задач механики ставят перед современным ис-
следователем серьезные вызовы.

В инженерных приложениях, связанных с проектированием неоднородных струк-
тур, оценка собственных частот играет важную роль. Основное внимание часто уде-
ляется максимизации первой собственной частоты для снижения риска появления 
раннего резонанса. Так, в работах [11, 12] рассматривается задача максимизации пер-
вой собственной частоты для многослойных структур из ламинированного компо-
зита в зависимости от угла ориентации волокон на каждом слое. В статье [11] иссле-
дована прямоугольная пластина, расчеты проведены в КЭ-пакете Abaqus с помощью 
метода Байесовской оптимизации. В  работе [12] рассмотрена цилиндрически изо-
гнутая панель, для вывода частотного уравнения используется метод Ритца, авторами 
продемонстрирована точность и  эффективность предложенной численной схемы. 
В отличие от [11, 12] в работе [13] вместо использования угла ориентации волокон на 
каждом слое в качестве проектных переменных используются так называемые пара-
метры ламинирования. Для нахождения максимальной собственной частоты исполь-
зовались градиентные методы, а для нахождения оптимальной последовательности 
укладки – генетические алгоритмы. Численные расчеты осуществлены для пластины 
и  цилиндра при различных значениях геометрических характеристик. Проведено 
сравнение с аналитическими решениями из литературы. Авторами статьи [14] пред-
ложен новый подход к оптимизации поперечных сечений экструдированных балок 
с целью максимизации их первой собственной частоты колебаний с учетом ограни-
чений на массу и  статическую податливость. Задача оптимизации формулируется 
с использованием метода пенализации для твердого изотропного тела (Solid Isotropic 
Material with Penalisation method, SIMP). Для расчета собственных частот исполь-
зуется расширенный метод конечных элементов (eXtended Finite Element Method, 
XFEM). Одним из перспективных направлений задач оптимизации конструкций 
является многоцелевая оптимизация. В  статье [15] представлена одновременная 
оптимизация геометрических и материальных характеристик ФГ оболочки двойной 
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кривизны под действием статической нагрузки, находящейся в  режиме свободных 
колебаний. Оболочка состоит из металла и керамики, а ее свойства изменяются по 
толщине. Процесс оптимизации заключается в поиске оптимальных значений пара-
метров геометрии оболочки (кривизны срединной поверхности в двух направлени-
ях) и параметра градиентности свойств. При этом целевые функции минимизируют 
массу и нормализованное смещение и максимизируют первую собственную частоту.

Как было указано выше, одной из важных задач вибрационного контроля объ-
ектов ответственного назначения является проектирование конструкций таким 
образом, чтобы собственные частоты находились как можно дальше от частот воз-
буждения. В работах [16–20] рассматривается другой подход, целью которого явля-
ется исследование возможности использования метода оптимизации топологии для 
максимального разделения двух соседних собственных частот. Так, в работе [16] рас-
смотрен одномерный и  двумерный случай продольных гармонических колебаний 
упругого стержня из периодического двукомпонентного материала (полиметилмет-
акрилат (ПММА) и алюминий). Процедура оптимизации основана на КЭ-анализе. 
Для разнесения значений собственных частот используются две разные формули-
ровки: в  первой максимизируется разница в  частотах, во второй максимизируется 
отношение двух соседних собственных частот. В  статьях [18, 19] решаются задачи 
максимизации собственной частоты или разницы значений двух собственных частот 
для конкретных объектов. В работе [18] представлено несколько примеров решений, 
демонстрирующих эффективность разработанного итерационного метода. В  част-
ности, показано, что благодаря найденной оптимальной геометрии элемента кон-
струкции можно смещать значение собственной частоты вдаль от заданной частоты 
внешнего возбуждения. Для задачи о максимизации разницы значений между второй 
и  третьей собственными частотами метод позволяет получить решение для малого 
числа итераций. В работе [19] представлено исследование нелинейной задачи опти-
мизации о  свободных колебаниях объекта из вязкоупругого материала. При этом 
в определяющем соотношении для напряжений и деформаций используется частот-
но-зависимый комплексный модуль. Для решения задачи предложен итерационный 
подход, основанный на асимптотическом и  численном методах. Представлены ре-
зультаты расчетов продольного сечения вязкоупругой балки на шарнирах и консоль-
ной вязкоупругой пластины. Численные примеры показывают, что разработанный 
метод обеспечивает устойчивую сходимость итерационного процесса оптимизации, 
также отмечена важность учета частотно-зависимых членов.

Одним из эффективных способов, позволяющих не допускать проявление резо-
нанса в  рабочем частотном диапазоне, является изменение значений собственных 
частот конструкции. Авторами [20] предложена модель оптимизации собственных 
значений, учитывающая влияние свойств материала и геометрические размеры объ-
екта. Для уменьшения вычислительных затрат использован метод смещения ограни-
чений полосы частот (frequency-band constraint shifting method, FBCSM). Представ-
лены результаты численных экспериментов для пластин с  различной геометрией 
и граничными условиями.

Одними из широко используемых конструкционных элементов являются цилин-
дрические структуры. Обычно они встречаются в  задачах акустики, гидравлики, 
термоупругости и  механики деформируемого твердого тела. При этом для каждой 
конкретной задачи важное значение имеет выбор направления изменения свойств 
материала цилиндра. Современное высокотехнологичное производство позво-
ляет изготавливать цилиндры с  радиальной, продольной или радиально-продоль-
ной неоднородностью. При этом важной задачей является исследование влияния 
определенного закона изменения свойств цилиндра на его характеристики, напри-
мер, акустические, температурные, прочностные и  т.д. В  свою очередь, появление 
и развитие ФГМ, свойства которых изменяются по определенным законам, привело 
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к исследованию нового класса задач оптимизации упругих свойств цилиндрических 
объектов из таких материалов [24–27]. Так, в работе [24] проведен анализ гармониче-
ских колебаний неоднородных по толщине дисков в осесимметричной постановке. 
Рассмотрена задача оптимизации формы, а в случае неосесимметричной постановки 
задача решена численно с помощью итерационного метода. Статьи [25, 26] посвя-
щены исследованию колебаний оболочек из армированного волокнами композита. 
В работе [25] рассмотрена коническая оболочка переменной жесткости, построено 
оптимальное распределение, доставляющее максимум первой собственной частоте, 
проведено сравнение полученного решения с оболочками с постоянной жесткостью. 
В статье [26] исследована цилиндрическая оболочка, для которой осуществлена оп-
тимизация несущей способности при изгибе. Ограничения на глобальную жесткость 
накладываются путем сравнения с квазиизотропной оболочкой. Результаты числен-
ных расчетов показывают улучшение несущей способности цилиндра до 17%, кото-
рое достигается за счет изменения направления приложения нагрузки. В работе [26] 
рассмотрена задача об установившихся колебаниях предварительно напряженной 
неоднородной круглой упругой пластины в  осесимметричной постановке. Решена 
задача поиска оптимального распределения упругого модуля пластины и  соответ-
ствующей формы колебаний. Определен диапазон изменения значений начального 
напряжения, для которого построены оптимальные законы неоднородности функ-
ции жесткости.

В настоящей работе рассматривается новая задача о максимизации значения пер-
вой собственной частоты в зависимости от закона изменения модуля Юнга. С помо-
щью методов вариационного исчисления на основе общей постановки задачи для 
неоднородного упругого изотропного тела получено условие оптимальности, харак-
теризуемое квадратичной формой компонент тензора деформаций. На его основе 
рассмотрена одномерная задача для сплошного круглого диска. Из уравнения дви-
жения и  граничного условия на внешней границе аналитически найдена искомая 
функция изменения модуля Юнга, зависящая от радиальной координаты. Получена 
формула для определения максимального значения первой собственной частоты при 
заданном ограничении на среднее интегральное значение модуля Юнга. Проведена 
оценка точности этой формулы путем сравнения с численным решением, получен-
ным с помощью метода конечных элементов в пакете FlexPDE. Осуществлено срав-
нение с однородным случаем.

2. Прямая задача. Общая постановка задачи о свободных колебаниях упругого изо-
тропного неоднородного тела может быть записана в тензорном виде [28–30]:
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где σ – тензор напряжений Коши, ρ – постоянная плотность, ω – круговая частота 
колебаний, u – вектор смещений, E – переменный модуль Юнга, ν – постоянный 
коэффициент Пуассона, ε  – тензор деформации, E  – единичный тензор, 
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На основе этой постановки рассмотрим задачу об осесимметричных свободных 

колебаниях сплошного цилиндра высоты h и  радиуса R. Цилиндр изготовлен из 
функционально-градиентного материала, модуль Юнга которого изменяется по ра-
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диальной или продольной координатам. В этом случае уравнения колебаний и опре-
деляющие соотношения в цилиндрической системе координат примут вид:
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где ( , )r ru u r z= , ( , )z zu u r z=  – компоненты вектора смещений u в радиальном и про-
дольном направлениях соответственно ( ϕ 0u = ). Граничные условия, описывающие 
наличие скользящих заделок на торцах цилиндра и отсутствие нагрузок на боковой 
поверхности, имеют вид:

	
u r R z h

r R z h h
z rz

rr rz

= = ∈ 

 = ±

= = = ∈ −



0 0 0 2
0 2 2

, ; , ,
; , ,

σ

σ σ
	 (2.3)

Для определенности рассмотрим цилиндр радиуса 1R =  м и высоты 4h =  м, изго-
товленный из функционально-градиентного материала – алюминий – оксид алюми-
ния (Al–Al2O3). В случае радиально-неоднородного материала внутренняя часть ци-
линдра ( 0r = ) изготовлена из алюминия: модуль Юнга 11

Al 0.68 10E = ×  Па, 
коэффициент Пуассона νAl 0.36= , плотность ρ 4

Al 0.893 10= ×  кг/м3. Внешняя часть 
(r R= ) изготовлена из оксида алюминия: модуль Юнга 

2 3

11
Al O 3.7 10E = ×  Па, коэф-

фициент Пуассона ν
2 3Al O 0.22= , плотность ρ

2 3

4
Al O 0.396 10= ×  кг/м3. Значения модуля 

Юнга, коэффициента Пуассона и плотности ρ взяты из открытых данных, размещен-
ных на сайте http://www.matweb.com.

В качестве законов изменения переменных параметров рассмотрены экспоненци-
альные законы

	 10 1.694( ) 6.8 10 rE r e= × , ν 0.492( ) 0.36 rr e-= , ρ 3 0.813( ) 8.93 10 rr e-= × 	 (2.4)

Значения коэффициентов этих функций с точностью до третьего знака после запя-
той определялись из условий равенства значений модуля Юнга, коэффициента Пу-
ассона и  плотности на границах области соответствующим параметрам алюминия 
( AlE , νAl, ρAl) и оксида алюминия (

2 3Al OE , ν
2 3Al O , ρ

2 3Al O ).
При исследовании задачи об определении характеристики материала в рамках аку-

стического подхода важной частью исследования является анализ ее влияния на аку-
стические свойства (анализ чувствительности) [31, 32]. По аналогии с работой [33] 
проведем анализ влияния переменных параметров, входящих в закон Гука. Для этого 
введем в  рассмотрение формальный параметр d, величина которого характеризует 
амплитудное значение модуля Юнга и коэффициента Пуассона:

	 ( ) (1 ) ( )dE r d E r= + , ν ν( ) (1 ) ( )d r d r= + ,	 (2.5)
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где параметр d принимает значения 0; 0.001; 0.004; 0.007; 0.01. Плотность принята 
постоянной средней величиной ( )ρ ρ ρ

2 3Al Al O 2= + . В  численных экспериментах 
фиксируется закон изменения модуля Юнга или коэффициента Пуассона (2.4), а не-
зафиксированный параметр изменяется по правилу (2.5). Для наглядности значения 
первой собственной частоты w1, полученные при различных значениях параметра d, 
представлены в виде графика на рис. 1.

Из представленных данных видно, что из двух параметров E и n, входящих в закон 
Гука, законы изменения модуля Юнга оказывают значительно большее влияние на 
значения первой собственной частоты рассматриваемого объекта, чем законы изме-
нения коэффициента Пуассона. Поэтому с практической точки зрения в первую оче-
редь интерес вызывают задачи об отыскании закона изменения E.

3. Задача оптимизации. Рассмотрим задачу оптимизации об определении опти-
мального закона распределения модуля E, при котором достигается максимальное 
значение первой собственной частоты. При этом считается, что есть ограничение на 
среднее интегральное значение, которое записывается в виде

	 1

V

EdV E
V

=ò ,	 (3.1)

величина E предполагается заданной.
Составим соотношение Рэлея в  общем тензорном виде, представляющее собой 

отношение потенциальной энергии к кинетической:

	
( )2

2
2 2

V V

V V

dV E M N dV

dV dV

θ

ω
ρ ρ

+

= =
ò ò

ò òu u

 σ ε ε ε

	 (3.2)

Для оптимизации значения собственной частоты с учетом изопериметрического 
условия (3.1) составим расширенный функционал Лагранжа

	
( )2

2

1V

V

V

E M N dV
J EdV E

VdV

θ

λ
ρ

+ æ ö÷ç ÷ç= + - ÷ç ÷ç ÷çè ø

ò
ò

ò u





ε ε

	 (3.3)

Рис. 1. Графики изменения первой собственной частоты  ω1 при изменении амплитудных значений 
законов изменения модуля Юнга E (сплошная линия) и коэффициента Пуассона ν (пунктирная линия)
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Варьируем функционал (3.3)

	

( ) ( )

( )

2 2

2

2

2

*
2

2

2 2

2
,

V V V

V

V V

V

V

E M N dV E M N dV dV

J

dV

E M N dV dV
EdV

dV

δ θ θδθ δ ρ

δ

ρ

θ ρ δ

λ δ

ρ

æ ö÷ç ÷ç + + + ÷ç ÷ç ÷çè ø
= -

æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø

+

- +
æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø

ò ò ò

ò

ò ò
ò

ò

u

u

u u

u

 



ε ε ε ε

ε ε

где λ λ* / V= .
Откуда выражение с вариацией δE

	
2

*
2

0
V

V

M N EdV
dV

θ
λ δ

ρ

æ ö÷ç ÷ç ÷ç + ÷ç ÷+ =ç ÷ç ÷÷ç ÷ç ÷ç ÷è ø

ò
ò u

ε ε 	 (3.4)

Из соотношения (3.4) следует, что
	 2 constM Nθ + =ε ε 	 (3.5)

Или в покомпонентном виде:

	
2 2 22 2

1 const
2

z z zr r r r r
u u uu u u u u

M N
r r z r z r r z

æ öæ ö æ ö æ öæ ö æ ö ÷ç¶ ¶ ¶¶ ¶ ¶÷ ÷ ÷ ÷÷ ÷ç ç ççç ç÷ ÷ ÷ ÷÷ ÷ç ç çç+ + + ç + + + ç + =÷ ÷ ÷ ÷÷ ÷ç ç ççç ç÷ ÷ ÷ ÷÷ ÷÷ ÷ç çç ç ç÷ ÷ ÷¶ ¶ ¶ ¶ ¶ ¶ç ÷è ø è øè ø è ø è ø ÷çè ø

Следует отметить, что левая часть полученного условия оптимальности (3.5) пред-
ставляет собой квадратичную форму компонент тензора деформации. На основе (3.4) 
и (3.5) можно получить соответствующие условия для задач оптимизации для стерж-
ня и круглой пластины, что будет продемонстрировано далее.

Упрощая оставшиеся слагаемые в выражении (3.3)

	
( ) ( )2 2

2

2

2 2   2
0V V V V

V

E M N dV dV E M N dV dV

dV

θδθ δ ρ θ ρ δ

ρ

+ - +

=
æ ö÷ç ÷ç ÷ç ÷ç ÷çè ø

ò ò ò ò

ò

u u u

u

 ε ε ε ε

,

используя технику, описанную в работе [34], граничные условия и основную лемму 
вариационного исчисления, можно получить уравнение колебаний (2.1).

Следует отметить, что в общем случае сформулированная задача является суще-
ственно нелинейной и для ее решения необходимо использовать специальные чис-
ленные методы. С другой стороны, для некоторых частных случаев можно получить 
аналитические решения. В качестве демонстрации ниже рассмотрены три примера 
для тонкой круглой пластины, стержня и тонкого сплошного диска.

Пример 1. В  цилиндрической системе координат отличные от нуля компоненты 
вектора перемещения для задачи о свободных осесимметричных изгибных колеба-
ниях тонкой упругой изотропной круглой пластины ( / 1h R  ) имеют вид [8, 27]

	 '( )ru zw r= - , ( )zu w r= 	 (3.6)
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Выпишем определяющие соотношения, используя представления (3.6),

	
( ) ( )

( ) ( )( )
( )

ϕϕ

ϕϕ

ϕϕ

ε ε ε

θ ε ε θ

ε ε

ν
θ θ

νν

22 2

2 22 2 2

2

, / , 0

/ , /

/

,
11

rr zz

rr

rr

zw zw r

z w w r z w w r

z w w r

E E E M N

¢¢ ¢= - = - =

¢¢ ¢ ¢¢ ¢= + = - + = +

¢¢ ¢= + = +

= + = +
+-

E E





ε ε

ε εσ

	 (3.7)

где ν
ν21

M =
-

 .

Рассмотрим (3.4) с учетом соотношений (3.6)–(3.7) для пластины

	 ( )ν
νν

2 2
2

2
const1

11
w ww w
r r

æ öæ ö æ ö ÷¢ ¢ç÷ ÷ ÷ç çç¢¢ ¢¢÷ ÷ ÷+ +ç çç÷ ÷ ÷ç çç÷ ÷ç ç ÷+è ø è ø ÷
=

ø
+

- çè

После упрощений получаем условие оптимальности для круглой пластины 
в виде [27]

	 ( ) ν 2
2

2
2 w ww w

r r
a

æ ö¢ ¢÷ç¢¢ ¢¢ ÷+ + ç ÷ç ÷ç
=

è ø
,	 (3.8)

где a – некоторая константа. С учетом главных граничных условий (0) 0w ¢ = , ( ) 0w R =  
можно получить решение для оптимальной формы колебаний

	
( )2 2

opt 

2
( )

2 1

a R r
w r

v

-
= -

+

Соответствующее оптимальное изменение цилиндрической жесткости, прямо 
пропорциональной модулю Юнга ( )E r , на основе уравнения колебаний и граничных 
условий, описывающих шарнирное опирание, получено в работе [27] в виде

	 ( )
4 2

opt 0
3 4 3
4

r rD r D
R R

é ùæ ö æ öê ú÷ ÷ç ç÷ ÷= - +ç çê ú÷ ÷ç ç÷ ÷ç çè ø è øê úë û
,

где 
20 0

( )2 R
rD D r d

R
r= ò  – заданное среднее интегральное значение величины D . При 

этом значение первой собственной частоты определяется по формуле

	 ω
ρ

0
opt 4
2 24(1 )v D

hR

+
=

Пример 2. Рассмотрим задачу о  свободных продольных колебаниях стержня 
( 1h R  ), левый край которого жестко защемлен. Используя закон Гука для стержня 
и формулу (3.5), получим условие оптимальности в виде

	 ( )2
constw ¢ = ,	 (3.9)

где ( )zu w z=  – функция продольного смещения. В качестве решения можно рассмо-
треть линейный закон

	 opt ( )w z Cz= ,
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где C   – константа. При этом удовлетворяется граничное условие на левом конце 
(0) 0w = . На основе найденного решения, уравнения продольных колебаний, гра-

ничного условия на правом конце и заданного среднего интегрального значения мо-
дуля Юнга 

00 )1 (
h
E z dzE

h
= ò , следуя технике [35], можно получить соответствующий 

оптимальный закон изменения модуля Юнга и формулу для вычисления первой соб-
ственной частоты

	 ( )
2

opt 0 2

3 1
2

zE E
h

z
æ ö÷ç ÷ç= - ÷ç ÷÷çè ø

, ω
ρ

0
opt 2
2 3E

h
=

Пример 3. Рассмотрим одномерную задачу о  радиальных колебаниях сплошного 
тонкого диска ( / 1h R  ). Ненулевую радиальную компоненту вектора перемеще-
ний обозначим следующим образом ( )ru u r= . Выпишем уравнение колебаний 
и определяющие соотношения:

	 ( ) ( )

ϕϕ

ϕϕ ϕϕ

ϕϕ ϕϕ

σ σσ
ρω

σ ε θ σ ε θ

ε ε θ ε ε

2 0

,

, ,

rrrr
r

rr rr

r r
rr rr

N

u
r r

E E

u u

N M

r r

M

-¶
+ + =

¶
= + = +

¶
= = = +

¶

	 (3.10)

Используя соотношение (3.5), получаем условие оптимальности в виде

	 ( )
2 2

2 2 constu uM u N u a
r r

æ öæ ö æ ö ÷ç÷ ÷ ÷ç çç¢ ¢÷ ÷ ÷+ + + = =ç çç÷ ÷ ÷ç çç÷ ÷ç ç ÷è ø è øç ÷è ø
	 (3.11)

Если рассмотрение задачи проводить в рамках обобщенного плоского напряжен-
ного состояния, то следует заменить M  на M .

Решение уравнения (3.11) с  учетом граничного условия (0) 0u =  можно найти 
в виде линейной функции

	 opt 1( )u r C r= 	 (3.12)

Получим выражения для компонент напряжений из (3.10) с учетом решения для 
функции смещения

( ) ( )( ) ( )

( ) ( )( ) ( )ϕϕ

σ

σ

1 1 1

1 1 1

( ) ( ) ( ) 2 ( )

( ) ( ) ( ) 2 ( )

rr

ur E r M N u M E r M N C MC C M N E r
r

ur E r M N Mu E r M N C MC C M N E r
r

æ ö÷ç ¢ ÷= + + = + + = +ç ÷ç ÷çè ø
æ ö÷ç ¢÷= + + = + + = +ç ÷ç ÷çè ø

	(3.13)

Видно, что для рассматриваемого решения ϕϕσ σrr = . Уравнение движения пред-
ставляет собой обыкновенное дифференциальное уравнение первого порядка отно-
сительно модуля Юнга ( )E r

	 ( ) ρω2
1 12 ( ) 0C M N E r C r¢+ + =

Откуда можно сначала получить выражение для E ¢, а затем, путем интегрирова-
ния, и для функции E

	 ρω2 2
2( )

2 2
rE r B Ar B

M N
= - + = +

+
 ,
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где 
( )

ρω2

0
2 2

A
M N

= - <
+

 , а B – константа интегрирования.

Следует отметить, что граничное условие на внутренней границе выполняется за 
счет выбора искомого решения в виде (3.12), в свою очередь, выполнение граничного 
условия для напряжения на внешней границе можно формально обеспечить за счет 
выбора закона изменения модуля Юнга на внешней границе.

Тогда можно найти константу B

	 2B AR= - 

С учетом этого выражения закон изменения ( )E r  примет вид

	 ( )2 2( ) 0E r A r R= - ³ 	 (3.14)

Чтобы найти искомую максимальную первую собственную частоту необходимо вос-
пользоваться изопериметрическим условием для модуля Юнга (3.1), которое в рас-
сматриваемом случае записывается в виде 

2 0
( )2 R

E E r r dr
R

= ò . Подставляя получен-

ное решение (3.14) в (3.1), с учетом представления для константы A получим

	 ω
ρ ρ ν ν

2
opt 2 2

4 2 4 1
(1 )(1 2 )

E M N E
R R

+
= =

+ -

 

	 (3.15)

При этом соответствующий оптимальный закон изменения модуля Юнга примет 
вид

	
2

opt 2
( ) 12 rE

R
r E

æ ö÷ç ÷ç= - ÷ç ÷÷çè ø
 	 (3.16)

Полученное соотношение (3.15) позволяет аналитически определять максималь-
ную первую собственную частоту по заданному среднему интегральному значению 
модуля Юнга, радиусу диска, плотности и коэффициенту Пуассона.

Ниже представлены примеры расчетов для диска.
Радиус диска принят равным 1R =  м, коэффициент Пуассона и плотность опреде-

лялись как соответствующие средние значения ( )ν ν ν
2 3Al Al O 2 0.29= + =  

и  ( )ρ ρ ρ
2 3

3
Al Al O 2 6.445 10= + = ×  кг/м3. Для определенности при проведении расче-

тов среднее интегральное значение модуля Юнга было выбрано в  виде 
( )2 3Al Al O *2 2.19E E E E= + = , где 1110*E =  Па. Для сравнения также были рассмо-

трены пять неоднородных законов изменения модуля Юнга ( ) ( ) *i iE r f r E= , удовле-
творяющих условию (3.1):

	 1( ) 1.7851f rr = + , 2
2( ) 1 2.38f rr = + , 3

3( ) 3 2.025f rr = -

	 π
4 ( ) 1 2.572cos

2
rf r

æ ö÷ç ÷= + ç ÷ç ÷çè ø
, ( )5( ) 5 1.405expf r r= - 	

(3.17)

Стоит отметить, что аналитическое значение (3.15) с точностью до погрешности 
вычислений совпало со значением ω1, полученным в пакете FlexPDE и представлен-
ным во второй строке табл. 1, что подтверждает точность расчетов с помощью МКЭ. 
Эффективность оптимального решения в  процентном соотношении, вычисленная 
по формуле
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	 ω ω ω ω1 1 1/ 100%D = - ×  ,	 (3.18)

представлена в третьем столбце табл. 1. Здесь ω1  – первая собственная частота для 
постоянного среднего значения модуля Юнга E. Из полученных результатов видно, 
что для оптимального закона opt ( )E r  действительно достигается максимальная соб-
ственная частота.

Для верификации полученных данных, также были построены графики формы 
колебаний ( )u r  для закона opt ( )E r , соответствующие расчетам в пакете FlexPDE и ана-
литической формуле (3.12). Аналогично построены графики компоненты тензора 
напряжений σ ( )rr r . В силу особенности на левой границе 0r =  сравнение результатов 
осуществлялось на подобласти 0.03,r Ré ùÎ ê úë û . Отмечено, что для всех графиков наблю-
дается совпадение с точностью до погрешности вычислений.

Заключение. На примере численного решения задачи о свободных осесимметрич-
ных колебаниях сплошного цилиндра показано, что закон изменения модуля Юнга 
существенно больше влияет на значение первой собственной частоты, чем закон 
изменения коэффициента Пуассона. Рассмотрена задача о максимизации значения 
первой собственной частоты в зависимости от закона изменения модуля Юнга при 
заданном ограничении на его среднее интегральное значение. Для построения реше-
ния составлен расширенный функционал Лагранжа. Используя методы вариацион-
ного исчисления, получено в общем виде условие оптимальности, характеризуемое 
квадратичной формой компонент тензора деформаций. Отмечено, что в общем слу-
чае сформулированная задача оптимальности является существенно нелинейной 
и для ее решения необходимо использовать специальные методы. С другой стороны, 
на примере трех частных задач показано, что решение может быть получено в анали-
тическом виде. Представлены основные результаты для задач о продольных колеба-
ниях стержня и изгибных колебаниях тонкой круглой пластины. Описано подробное 
решение задачи о радиальных колебаниях сплошного тонкого диска на основе полу-
ченного условия оптимальности. Предложено представление функции радиального 
смещения, которая описывается линейным законом. Искомая оптимальная функ-
ция изменения модуля Юнга и соответствующее ей выражение для нахождения мак-
симального значения первой собственной частоты получены в аналитическом виде. 
Проведена оценка точности полученных формул путем сравнения с численными ре-
зультатами, полученными с помощью метода конечных элементов в пакете FlexPDE. 
Проведено сравнение значений первой собственной частоты для диска из однород-

Таблица 1. Значения первой собственной частоты для различных законов изменения модуля 
Юнга

Закон изменения 
модуля Юнга ω1, Гц ωD , %

( )optE r 15838.76 12.27
E 14107.57 –

1( )E r 12948.26 8.22

2( )E r 12232.93 13.29

3( )E r 15183.98 7.63

4 ( )E r 15381.14 9.03

5( )E r 15213.40 7.84
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ного и неоднородного материала, у которого законы изменения модуля Юнга удо-
влетворяют изопериметрическому условию.

Благодарности. Исследование выполнено за счет гранта Российского научного 
фонда №  22-11-00265, https://rscf.ru/project/22-11-00265/, в  Южном федеральном 
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On the Optimal Choice of Young’s Modulus for a Functionally Graded Material
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The problem of maximizing the value of the first natural frequency for a  functional-
ly graded material depending on the variation law of Young’s modulus is considered. It 
is assumed that there is a  limitation on the average integral value of Young’s modulus. 
The effect of variable material properties on the value of the first natural frequency is 
shown using the finite element method for the numerical solution of a two-dimension-
al axisymmetric problem of free oscillations of a  cylinder. The optimality condition is 
obtained using the methods of variational calculus based on the general formulation of 
the problem for an inhomogeneous elastic isotropic body. It is noted that the left-hand 
side of this condition has a quadratic form. The problem of finding the optimal variation 
law of Young’s modulus is essentially nonlinear in the general case and special numerical 
methods must be used to solve it. Three special cases are considered using the obtained 
optimality condition: bending vibrations of a circular solid plate, longitudinal vibrations 
of a rod and radial vibrations of a solid thin disk, taking into account the corresponding 
hypotheses. The optimal variation laws of Young’s modulus and the displacement func-
tion are obtained in analytical form for all problems. Particularly, in the problem for the 
disk, a  representation is proposed for the radial component of the displacement field, 
which is described by a linear law. It is shown that in this case the corresponding radial 
and tangential components of the stress tensor are equal. The sought-for function of the 
change in Young’s modulus along the radial coordinate is found in analytical form from 
the equation of motion and the boundary condition on the outer boundary. An analytical 
expression is obtained for determining the value of the natural frequency, corresponding 
to the found solution. The accuracy of this formula is estimated by comparing it with the 
numerical solution obtained using the finite element method in the FlexPDE package. 
A comparison of the values of the natural frequency for homogeneous and inhomoge-
neous disks is made.

Keywords: cylinder, rod, plate, disk, functionally graded material, finite element method, 
Young’s modulus, optimization, natural frequency
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