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Используя функцию напряжений Эйри для плоско-деформированного состоя-
ния сплошной среды, было получено представление для сингулярностей класси-
ческого поля упругих напряжений. Для неевклидовой модели сплошной среды 
показано, что структура поля внутренних напряжений плоско-деформирован-
ного состояния складывается из классического поля упругих напряжений и не-
классического поля напряжений, определяемого через функцию несовместности 
деформаций. Требование отсутствия особенностей в поле внутренних напряже-
ний позволило скомпенсировать сингулярность в решении теории упругости для 
нулевой гармоники за счет выбора сингулярности неклассического поля напря-
жений.
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1. Введение. В механике сплошной среды для задач классической теории упругости 
хорошо известен факт существования сингулярных решений для полей напряжений. 
К их интерпретации можно подойти с разных точек зрения [1, 2]. Инженер обычно 
склонен утверждать, что никакие реальные материалы не способны выдерживать 
бесконечное напряжение и, следовательно, любая ситуация, в которой такое напря-
жение предсказывается теорией, противоречит здравому смыслу. Следует отметить, 
что разрывы в геометрии или граничных условиях, наличие острого угла или сосре-
доточенная (дельта-функция) нагрузка всегда приводит к  появлению сингулярно-
стей классической теории для напряжений.

С точки зрения физики появление сингулярных решений можно объяснить тем, 
что соответствующие модели недостаточно адекватно описывают исследуемые явле-
ния, в частности, на практике не существуют острых углов, и нагрузки никогда не 
могут быть идеально сконцентрированы. При этом реальные материалы не являются 
континуумами, поскольку в них можно выделить дискретные структуры на разных 
масштабах. Таким образом, не имеет практического смысла говорить о  значении 
величин, находящихся к  углу ближе, например, чем на одно атомное расстояние, 
поскольку теория все равно не применима.

Другой подход к анализу сингулярных решений связан с выбором класса функций, 
в рамках которого следует искать решение, и формулировкой утверждений о сингу-
лярностях, допустимых в решении [3]. В этом контексте возражения инженера, из-
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ложенные выше, можно устранить, ограничив модельные предположения: если мы 
хотим придать какой-либо смысл сингулярным решениях, то их следует рассматри-
вать как пределы, соответствующие практическим ситуациям. Тогда разница между 
реальной проблемой и предельным случаем наблюдается локально, а в областях син-
гулярного поведения используется критерий, согласно которому единственно при-
емлемыми особенностями являются те, для которых полная энергия деформации 
в небольшой области, окружающей особой точке, ограничена [3].

Обсуждение проблемы сингулярности решений для различных прикладных задач 
и необходимость расширения классической теории упругости представлено у многих 
исследователей. В [4–7] развивается нелокальная модель сплошной среды, что при-
водит к повышению порядка рассматриваемых уравнений, однако позволяет постро-
ить регулярное решение традиционно сингулярных задач математической физики. 
Разработка несингулярной модели описания поля упругих напряжений и  дефор-
маций в материалах с учетом микрохарактеристик (дислокаций и дисклинаций) на 
основе градиентной теории Миндлина выполнена в  [8–11]. Несингулярные реше-
ния градиентной упругости для дислокаций и  трещин сконструированы в  [12–15]. 
Несингулярные решения теории упругости были использованы для описания оста-
точных напряжений для плоско-деформированного состояния сплошной среды [16]. 
Однако детальный вывод результатов не излагался, поэтому в  данной работе этот 
пробел исследований восполнен.

Кратко опишем содержание работы. В разд. 1, используя функцию напряжений 
Эйри, представлены сингулярности классического поля упругих напряжений для 
плоско-деформированного состояния сплошной среды. В разд. 2 указано, что об-
общение классической теории и переход к неевклидовой модели сплошной среды 
лежит на пути отказа от классических условий совместности. Раздел  3 посвящен 
изложению общей идеи удаления сингулярности в  решениях теории упругости. 
В  частности, показано, что структура поля внутренних напряжений складывается 
из классического поля упругих напряжений и неклассического поля напряжений, 
определяемого на основе неевклидовой модели сплошной среды. Требование от-
сутствия особенностей в  поле внутренних напряжений означает, что сингуляр-
ные вклады классического поля должны быть скомпенсированы сингулярностями 
неклассического поля. Структура последних сингулярностей для поля с полярной 
симметрией – нулевая гармоника – анализируется в разд. 4. Сингулярные слагае-
мые поля внутренних напряжений представлены в разд. 5. При этом оказывается, 
что амплитуды сингулярностей классического и  неклассического полей можно 
выбрать согласовано, обеспечив обращение в  нуль сингулярного слагаемого поля 
внутренних напряжений.

2. Сингулярности нулевой гармоники классического поля напряжений. Рассмотрим 
плоско-деформированное состояние сплошной среды, для которой уравнения меха-
нического равновесия имеют вид
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	 (2.1)

Соотношения (2.1) тождественно удовлетворяются, если ввести функцию напряже-
ний Эри Φ согласно формулам:
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В классической теории упругости справедлив закон Гука:

	 σ λδ ε µε2ij ij kk ij= + ,	 (2.3)
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где λ µ,  – феноменологические параметры Ламе, δij – символ Кронекера. При этом 
шесть компонент тензора деформаций εij определяются через три компоненты iu  век-
тора перемещений: ( )ε / / / 2ij i j j iu x u x= ¶ ¶ + ¶ ¶ . Поэтому функции εij не могут 
быть произвольными и должны удовлетворять дополнительным ограничениям, ко-
торые в механике сплошной среды называются условиями сплошности или совмест-
ности, сформулированными Сен-Венаном [17]. Для плоского случая они редуциру-
ются к одному соотношению:

	
ε ε ε2 2 2

11 22 12
2 2 1 1 1 2

2 0
x x x x x x
¶ ¶ ¶

+ - =
¶ ¶ ¶ ¶ ¶ ¶

	 (2.4)

Определив деформации εij из (2.3), подставим их в (2.4), а затем воспользуемся (2.1), 
(2.2), в результате для функции напряжений Φ Φ= clas  получаем однородное бигармо-
ническое уравнение:

	 � �2 0clas = 	 (2.5)

Перейдем к полярной системе координат ϕ( , )r  и рассмотрим зависящие только от 
r частное решение (2.5): Φ Φ0 0, , ( )clas clas= r , которое совпадает с нулевой гармоникой 
соответствующего ряда Фурье полного решения. Тогда функция Φ0,clas удовлетворяет 
обыкновенному дифференциальному уравнению:
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Выполняя последовательно интегрирование в  (2.6), получаем следующее пред-
ставление для Φ0,clas:

	 �0 0 0
2

0 0
2
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с некоторыми постоянными α β0 0 0 0, , ,A B . В полярной системе координат не завися-
щие от угловой переменной компоненты классического поля напряжений ϕϕ ϕτ τ τ(0) (0) (0), ,rr r  
вычисляются по следующим формулам:
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Соотношения (2.7) показывают, что поля ϕϕτ τ(0) (0),rr  имеют сингулярное поведение 
при 0r ® . Обозначая сингулярные вклады в эти поля через ϕϕ

(0) (0),rrT T  соответственно, 
получаем:

	 ϕϕ

α α
β β(0) (0)0 0

0 02 2
2 ln , 2 lnrrT r T r

r r
= + = - 	 (2.8)

3. Переход к неевклидовой модели. Следует заметить, что поля, определяемые соот-
ношением (2.2), принадлежат к более широкому классу напряжений: они являются 
самоуравновешенными. Это означает [18, 19], что сила, действующая на выбранную 
область среды, равна нулю и суммарный момент сил внутренних напряжений обра-
щается в нуль. Математически сформулированные условия записываются соответ-
ственно в виде
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	 σ σ σ0, ( ) 0ij j ik ij k kj i j
S S

n dl M x x n dl
¶ ¶

= = - =ò ò ,

где S  – площадь, занимаемая телом; S¶  – граница этой области jn  – направляющие 
косинусы внешней нормали к границе области. Самоуравновешенные поля напря-
жений в инженерной литературе также называются остаточными напряжениями – 
это напряжения, которые существуют внутри материала или тела, когда на него не 
действуют внешние силы. Следует указать, что это состояние внутреннего напряже-
ния материала связывают с наличием какого-то типа дефекта (дислокации, дискли-
нации и др.). В физических теориях прочности и пластичности рассмотрены различ-
ные модели дефектов кристаллической структуры материалов, приводящие 
к  отличным от нуля значениям напряжений в  условиях равновесия. Анализ таких 
физических моделей еще в пятидесятые годы привел исследователей [20, 21] к выво-
ду о  необходимости использовать при их описании неевклидовы геометрические 
объекты, запрещенные в классической теории упругости.

Выше было указано, что при экспериментальном исследовании полей внутрен-
него напряженного состояния не наблюдается их сингулярного поведения. При этом 
описание полей на основе классической теории приводит к сингулярностям. Обоб-
щение теории может быть выполнена на пути введения математических объектов, 
не укладывающихся в рамки Евклидова геометрического описания деформационных 
свойств упругой сплошной среды.

В наиболее четкой форме это было проанализировано С.К. Годуновым [17], ука-
завшим, что отождествление изменение формы тела в  евклидовой метрике 

δ 2ij ij ijg A= -  внешнего наблюдателя, где ijA  – тензор деформации Альманси, с изме-
нениями внутренней метрики материала ijG , определяющей изменение его внутрен-
ней энергии, является дополнительной гипотезой, постулируемой в  классической 
теории. Пространство внешнего наблюдателя является евклидовым, поэтому тензор 
Римана, вычисленный для метрического тензора ijg , равен нулю [17]. При малых де-
формациях εij ijA » , тогда равенство нулю тензора Римана сводится к  условию со-
вместности Сен-Венана.

Однако С.К. Годуновым было замечено, что классические компоненты деформа-
ций εij не совпадают в общем случае с деформациями ijE , определяемыми через рео-
логическое соотношение между компонентами поля напряжений и  деформаций 
даже для линейной связи между ними:

	 σ λδ µ2ij ij kk ijE E= + ,	 (3.1)

(в [17] поля ijE  называются эффективными). Поэтому тензор Римана, вычисленный 
для эффективного метрического тензора деформации δ 2ij ij ijG E= - , в общем случае, 
не равен нулю и, как следствие, не выполняются условия совместности Сен-Венана. 
Следовательно, пространство параметров для описания эффективных деформаций 
следует расширить. Тогда общая идея при обобщении классической теории состоит 
в отказе от классических условий совместности и переходе к неевклидовой модели 
сплошной среды. В этом случае компоненты тензора Римана становятся дополни-
тельными параметрами модели, характеризующими внутреннюю геометрию мате-
риала, а с точки зрения механики сплошной среды их естественно называть функ-
циями несовместности.

4. Общая идея удаления сингулярности в решениях теории упругости. В двумерном 
случае тензор Римана определяется единственной компонентой  [22]  – скалярной 
кривизной R. В  дальнейшем мы рассматриваем малые деформации 1ijE  , тогда 
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нетрудно убедиться, что отличие ее от нуля задается через следующую функцию не-
совместности:

	
2 2 2

11 22 12
2 2 1 1 1 2

2
2

E E ER
x x x x x x
¶ ¶ ¶

= + -
¶ ¶ ¶ ¶ ¶ ¶

	 (4.1)

В классической теории упругости 0R = , что соответствует выполнению условий со-
вместности для деформаций (2.4) и соотношения εij ijE = . Переход к неевклидовой 
модели сплошной среды связан с предположением, что R отличен от нуля. Выразим 

ijE  из (3.1) и подставим в (4.1) – это приводит к уравнению для σ σ jj= :

	 µ λ
∆σ ν

ν λ µ
;

1 2( )
R= =

- +

Используя (2.2), получаем уравнение для функции напряжений Φ:

	 µ
∆ Φ

ν
2

1
R=

-
	 (4.2)

Таким образом, при расширении классической теории мы получили неоднород-
ное бигармоническое уравнение для функции напряжения. Поскольку оно является 
линейным, то его решение Φ можно представить в виде суммы классической функ-
ции напряжений Φclas  и дополнительного вклада Φnon-clas:

	 Φ Φ Φ= +clas non-clas,	 (4.3)

где Φnon-clas – частное решение уравнения (4.2). Подставляя (4.3) в (2.2), получаем сле-
дующее представления для компоненты поля напряжений:
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	 (4.4)

Из (4.4) видно, что структура поля внутренних напряжений складывается из класси-
ческого поля упругих напряжений τij и неклассического поля напряжений ijn , опреде-
ляемого через функцию несовместности R.

Функция R использовалась при формулировке моделей сплошных сред с внутрен-
ней структурой [23] и в предположении квадратичной зависимости внутренней энер-
гии среды от термодинамических переменных было получено уравнение для R в сле-
дующем виде:

	 �2 0R R= ≠� �, ,	 (4.5)

где параметр γ  характеризует размер внутренней пространственной структуры. Пе-
рейдем к безразмерным переменным γ4/i ix x®  и выполним перенормировку для 
σ Φ, ,ij R, полагая σ µσij ij® , Φ Φµ γ/®  γ ν(1 )R R® - , тогда (4.2), (4.5) редуциру-
ются к соотношениям

	 Ä∆ Φ2 2,R R R= = 	 (4.6)

Из (2.5), (4.3), (4.6) следует, что Φnon-clas удовлетворяет следующему уравнению:
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	 � � �2
non-clas non-clas= 	 (4.7)

В полярной системе координат ϕ( , )r  рассмотрим зависящие только от r решения 
Φ Φ0 0, , ( )non-clas non-clas= r . Тогда Φ0,non-clas, как следует из (4.7), удовлетворяет обыкновен-
ному дифференциальному уравнению:

	 1
2

0 0r
d
dr

r d
dr











=Φ Φ, ,non-clas non-clas	 (4.8)

Если строить общее решение (4.7) в виде соответствующего ряда Фурье, то Φ0,non-clas 
совпадает с его нулевой гармоникой. Соотношение (4.4) для нулевых гармоник запи-
сывается в виде:

	

� � ��� �� �� �� ��
( ) ( ) ( ) ( ) ( ), ,0 0 0 0

2

2
0

2

= + = =n
d

dr
n

d

d

� �clas non-clas

rr

n
r

d
dr

n
r

d
rr rr rr rr rr

2

0 0 0 0 01 1
� � �( ) ( ) ( ) ( ) ( ), ,= + = =

� �clas non-cllas

dr
nr r� � �

( ) ( ),0 00 0= =

	 (4.9)

Компоненты упругого поля ϕϕτ τ(0) (0),rr  проявляют сингулярное поведение при 0r ® , 
которое определяется формулами (2.8). Ниже будет показано, что Φ0,non-clas является 
линейной комбинацией цилиндрических функций нулевого порядка (5.1). Среди 
них, как известно, функция Неймана и функция Макдональда имеют сингулярность 
при 0r ® . Выше было указано, что полное поле (4.9) не должно проявлять сингуляр-
ного поведения при 0r ® . Поскольку сингулярности классического и неклассиче-
ского полей входят в  ϕϕσ σ(0) (0), rr  аддитивно, то требование регулярности ϕϕσ σ(0) (0), rr  при 

0r ®  можно гарантировать при условии, что сингулярные вклады ϕϕ
(0) (0),rrT T  в поля 

ϕϕσ σ(0) (0), rr  должны быть скомпенсированы сингулярностями полей ϕϕ
(0) (0), rrn n . Этого 

можно обеспечить за счет того, что полная комбинация амплитудных коэффициен-
тов при (0)

ijn , τ(0)
ij  при одинаковых сингулярностях должна обращаться в нуль.

5. Сингулярности неклассического поля напряжений. Для вычисления компонент 
ϕϕ
(0) (0), rrn n  необходимо знать решение уравнения (4.7). Из него следует, что функция 
Φ0,non-clas является линейной комбинацией цилиндрических функций нулевого по
рядка:

	 Φ0 0 0 0 0 0 0 0 0, ( ) ( ) ( ) ( )non-clas = + + +a J r b N r c K r d I r ,	 (5.1)

где 0( )J r  и  0( )N r   – функции Бесселя и  Неймана соответственно, 0( )K r   – функция 
Макдональда и  0( )I r  – модифицированная функция Бесселя, 0 0 0 0, , ,a b c d  – произ-
вольные постоянные. Тогда

	 n
d

dr
a J r b N r c K r d��

( ) , ( ) ( ) ( )0
2

0
2 0 0 0 0 0 0 0= = ′′ + ′′ + ′′ + ′′

� non-clas II r0( ),	 (5.2)

где верхний штрих у цилиндрических функций обозначает дифференцирование по r. 
Воспользуемся соотношениями между цилиндрическими функциями [24]:

	
0 1 0 1

1 0 2 1 0 2

0 1 0 1 1 0 2 1 0 2

( ) ( ), ( ) ( )
2 ( ) ( ) ( ), 2 ( ) ( ) ( )

( ) ( ), ( ) ( ), 2 ( ) ( ) ( ), 2 ( ) ( ) ( )

N r N r K r K r
N r N r N r K r K r K r

J r J r I r I r J r J r J r I r I r I r

¢ ¢= - = -
¢ ¢= - - = +

¢ ¢ ¢ ¢= - = = - = +

	 (5.3)
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Это позволяет записать (5.2) в следующем виде:

	
( ) ( )

( ) ( )

(0) 0 0
0 2 0 2

0 0
0 2 0 2

( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )
2 2

a b
n J r J r N r N r

c d
K r K r I r I r

ϕϕ = - - - - +

+ + + +

	 (5.4)

Сингулярные вклады в правой части (5.3) при 0r ®  порождаются функциями Ней-
мана 0 2( ), ( )N r N r  и Макдональда 0 2( ), ( )K r K r . Обозначим эти вклады через ϕϕ

(0)S  и ис-
пользуем асимптотические формулы для них:

	 π π0 2

2

2

0 2

4( ) (1) ( ) (1)

2( ) (1) ( ) (1)

2 ln ,

ln ,

N
r

r r O r O

O

N

K K
r

r r O r

= + - +

= +

=

+-=
	 (5.5)

Тогда получаем

	 ϕϕ π π 2 2
(0) 0 04 2 (1)

2
2 ln ln

2
b c

S
r

r
r

r O
æ ö æ ö÷ ÷ç ç÷ ÷= - + + +ç ç÷ ÷ç çç

- +
÷ ÷çè ø è ø

	 (5.6)

Для поля (0)
rrn  справедливо представление в виде

	
Φ0,non-clas(0) 0 0 0 0

0 0 0 0
1 ( ) ( ) ( ) ( )rr

d a b c d
n J r N r K r I r

r dr r r r r
¢ ¢ ¢ ¢= = + + +

Отсюда и из (5.3) следует, что

	
Φ0,non-clas(0) 0 0 0 0

1 1 1 1
1 ( ) ( ) ( ) ( )rr

d a b c d
n J r N r K r I r

r dr r r r r
= = - - - + 	 (5.7)

Поскольку [24]

	 1 0 2 1 0 2
2 2( ) ( ) ( ), ( ) ( ) ( )J r J r J r I r I r I r
r r

= + = -

и функции 0 2 0 2( ), ( ), ( ), ( )J r J r I r I r  не имеют особенностей при 0r ® , то сингуляр-
ный вклад в  (0)

rrn  дается функциями Неймана 1( )N r  и  Макдональда 1( )K r . Учиты-
вая [24], что

	 1 0 2 1 0 2
2 2( ) ( ) ( ), ( ) ( ) ( )N r N r N r K r K r K r
r r

= + - = -

и принимая во внимание формулы (5.5), то сингулярный вклад (0)
rrS  в  (0)

rrn  равен:

	
π π 2 2

(0) 0 04 2 (1)2 ln ln
2 2rr

b c
S r r O

r r

æ ö æ ö÷ ÷ç ç÷ ÷= - - - +ç ç÷ ÷ç ç÷ ÷ç ø
+

çè ø è
	 (5.8)

6. Удаление сингулярностей. Используя (2.8), (5.6), (5.7), запишем сингулярные 
вклады ϕϕΣ Σ(0) (0), rr  полного поля напряжений ϕϕσ σ(0) (0), rr  (4.9):
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	 (6.1)
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Сгруппируем в (6.1) вклады, имеющие одинаковое сингулярное поведение:

	
ϕϕΣ β α
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è
Заметим, что в  ϕϕΣ Σ(0) (0), rr  соответствующие коэффициенты при ln r , 1 / r  одинаковы. 
Выше было сформулировано требование, чтобы функции ϕϕΣ Σ(0) (0), rr  не имели особен-
ностей при 0r ®  – это можно гарантировать при обращении в нуль коэффициентов 
при сингулярностях. В результате получаем два условия:

	 α
π

β
π

0 0 0
0 0 0

2
2 0, 0

2
b c b

c- - = + - =

Отсюда следует, что

	
α πα

β πβ0 0
0 0 0 02 ,

42
c b= + = - 	 (6.2)

В заключение выпишем представление для полей напряжений ϕϕσ σ(0) (0), rr , учитывая 
(2.7), (4.9), (5.4), (5.7) и (6.2):
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Функции ϕϕσ σ(0) (0), rr  не содержат особенностей при 0r ® .

Обсуждение. Предложенный в данной работе способ преодоления сингулярности 
был связан с использованием неевклидовой модели материала. Это позволило увели-
чить число степеней свободы и избежать трудностей классической модели. Хотя уда-
ленные сингулярности определяются особенностью полярной системы координат, 
тем не менее, сравнение теоретических результатов с экспериментальными данными 
показывает, что построенные регулярные поля напряжений подходящим образом 
аппроксимируют результаты лабораторных наблюдений. Реализованный подход для 
нулевой гармоники решения теории упругости естественно применить для анализа 
сингулярности других гармоник. Необходимость учета зависимости от угла для поля 
напряжений возникает, например, в задачах теории упругости о равновесии пластин 
с угловыми вырезами [25]. С другой стороны, введение зависимости от угла позволит 
выяснить также возможные ограничения подхода, реализованного для нулевой гар-
моники.
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Singularity Removal in the Elasticity Theory Solution Based on a Non-Euclidean Model 
of a Continuous Medium
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A representation for singularities of the classical elastic stress field was obtained using the 
Airy stress function for a plane-strained state of a continuous medium. For a non-Euclid-
ean model of a continuous medium, the structure of the internal stress field of a plane-
strained state was shown to consist of a classical elastic stress field and a non-classical stress 
field determined through the incompatibility function of deformations. The requirement 
for the absence of singularities in the internal stress field allowed to compensate for the 
singularity in the elasticity theory solution for the zero harmonic by choosing a singularity 
of the non-classical stress field.

Keywords: Airy stress function, non-Euclidean model of a continuous medium, deforma-
tion incompatibility
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