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Используя систему уравнений соответствующей классической теории ортотроп­
ных цилиндрических оболочек, исследуются свободные колебания ортотропной 
тонкой упругой цилиндрической панели с  шарнирно закрепленной граничной 
образующей. Для расчета собственных частот и идентификации соответствующих 
собственных мод используется обобщенный метод сведения к  обыкновенным 
дифференциальным уравнениям Канторовича–Власова. Получены дисперси­
онные уравнения для нахождения собственных частот возможных типов колеба­
ний. Установлена асимптотическая связь между дисперсионными уравнениями 
рассматриваемой задачи и аналогичной задачи для ортотропной прямоугольной 
пластины. Приводится механизм, с  помощью которого расчленяются возмож­
ные типы краевых колебаний. На примере ортотропной цилиндрической панели 
получены приближенные значения безразмерной характеристики собственных 
частот колебаний.
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1. Введение. Известно, что на свободном крае ортотропной пластины планарные 
и изгибные колебания могут возникать независимо друг от друга [1–6]. При искрив­
лении пластинки эти колебания связываются, вызывая возникновение двух новых 
типов колебаний, локализованных на свободном крае: преимущественно тангенци­
альных и преимущественно изгибных. Преобразование одного вида колебаний в дру­
гой происходит на свободном крае тонкой цилиндрической упругой панели. Для этих 
колебаний возникает сложное распределение частот собственных колебаний в зави­
симости от геометрических и  механических параметров конечных и  бесконечных 
цилиндрических панелей [4–8]. С  увеличением числа свободных краев цилиндри­
ческой панели распределение становится все более сложным [17–20]. В частности, 
собственные колебания ортотропных цилиндрических панелей, когда все края сво­
бодны исследованы в работe [17], а для консольных ортотропных цилиндрических 
панелей в  работе [18]. Интерфейсные и  краевые колебания ортотропных цилин­
дрических композитных панелей со свободными краями исследованы в работе [19]. 
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В работе [20] рассмотрены собственные колебания ортотропных цилиндрических па­
нелей с жестко закрепленной граничной образующей. Отметим, что задачи [17–20] 
не допускают разделение переменных. Исследование краевого резонанса цилиндри­
ческих панелей с шарнирно закрепленной граничной образующей, когда другие края 
свободны, является одной из сложнейших задач теории колебаний пластин и цилин­
дрических панелей [4]. Эти трудности решаются путем использования сочетания 
аналитической и асимптотической теорий, а также численных методов.

В настоящей работе впервые исследованы свободные колебания прямоугольных 
ортотропных пластин с шарнирно закрепленной стороной и цилиндрических орто­
тропных панелей с шарнирно закрепленной граничной образующей. Такие элемен­
ты являются важными составляющими современных конструкций и  сооружений. 
Поэтому вопрос о  свободных колебаниях этих элементов имеет большое значение 
и требует особого внимания.

Задачи не допускают разделения переменных. Можно доказать, что такие задачи 
для цилиндрических панелей из ортотропных материалов с простыми граничными 
условиями являются самосопряженными и  неотрицательно определенными [6]. 
Поэтому к ним можно применить обобщенный метод Канторовича–Власова [9–13]. 
В  качестве базисных функций используются собственные функции следующей за­
дачи
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Задача (1.1) самосопряженная и  имеет неотрицательный простой дискретный 
спектр с предельной точкой на бесконечности. Собственные функции задачи (1.1), 
соответствующие собственным значениям , ,θm m8 1= ∞, имеют вид:
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Эти собственные функции вместе со своими первыми и вторыми производными 
определяют ортогональный базис в  гильбертовом пространстве 2 0,L lé ùê úë û [13]. Здесь 
θ ,  1,m m = ¥ положительные нули определителя Вронского для функций (1.3) в точке 
α l= . Обозначим
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Заметим, что производные в формулах (1.3)–(1.4) берутся по θ α m  и β 1m
¢ ® , β 1m

¢¢ ®  
при  m ® ¥.

2. Постановки задач и  основные уравнения. Предполагается, что образующие ци­
линдрических панелей ортогональны концам панелей. Криволинейные координаты
( )α β  ,  определяются на срединной поверхности панелей, где ( )α α  0 l£ £  

и ( )β β  0 s£ £   – длины образующей и  направляющей окружности соответственно; 
 l   – длина панелей; s  – длина направляющей окружности срединной поверхности 
(рис. 1).

В качестве исходных уравнений, описывающих колебания панелей, будем исполь­
зовать уравнения, соответствующие классической теории ортотропных цилиндриче­
ских оболочек, записанные в выбранных криволинейных координатах α  и β :
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Здесь 1 u , 2u  и  3u  – проекции вектора перемещений на направления α β ,  и на нормаль 
к срединной поверхности панели соответственно;  R – радиус направляющей окруж­
ности срединной поверхности; µ4 2 2 / 1h=  ( h  – толщина панели); λ ω ρ2 = , где 

Рис. 1. Цилиндрическая панель с образующими ортогональными к концам панели
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ω  – угловая частота, ρ  – плотность материала;  ijB  – коэффициенты упругости ци­
линдрической панели. Граничные условия имеют вид [14]:
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Соотношения (2.2) являются условиями свободных торцов при α 0,l=  соответ­
ственно. Соотношения (1,3) являются условиями свободного образующего при 
β 0= , а условия (2.4) указывают на то, что граничная образующая β s=  шарнирно 
закреплена.

3. Вывод и анализ характеристических уравнений. Формально заменим спектраль­
ный параметрλ  на λ1, λ2 в первом и втором, и наλ3  третьем уравнениях системы (2.1) 
соответственно. Решения системы (2.1) для задачи ищутся в виде
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где θ α( ), 1,m mw m = ¥ , определяются из (1.2), а  ,m mu v и χ  – неизвестные константы. 
Для рассматриваемой задачи условия (2.2) выполняются автоматически. После под­
ставки (3.1) в уравнение (2.1), полученные уравнения скалярным образом умножа­
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Из третьего уравнения с учетом соотношений (3.2) и (3.3) выводятся характеристи­
ческие уравнения
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Пусть χ , 1,4j j =  – попарно различные корни уравнения (3.4) с неположительны­
ми вещественными частями и χ χ4 ; 1,4j j j+ = - = . Пусть ( ) ( ) ( )
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тривиальные решения вида (3.1) системы (2.1) при χ χ , 1,8j j= =  соответственно. 
Решение задачи ищется в виде
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Подставив уравнение (3.6) в граничные условия (2.3) и (2.4), каждое полученное 
уравнение, содержащее θ α( )mw , умножается на θ α( )mw , а  уравнение, содержащее 

θ α( ),mw ¢  соответственно на θ α( ),mw ¢  а затем интегрируется в пределах от 0 до l . В ре­
зультате получаются системы уравнений
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Верхний индекс j  в скобках означает, что соответствующая функция берется при 
χ χ .j=  Для того чтобы совокупность систем (3.7) имело нетривиальное решение, 
необходимо и достаточно, чтобы
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Численные вычисления показывают, что левая часть равенства (3.9) становится 
малой, когда любые два корня уравнения (3.4) становятся близкими друг к другу. Это 
сильно усложняет расчеты и может привести к ошибочным решениям. При деталь­
ном изучении уравнения (3.9) заметно, что при сближении корней можно выделить 
стремящийся к нулю множитель в левой части этого уравнения. Вводятся следующие 
обозначения:

	 ( )θ θ[ ] (exp( ) exp( )) / ( ), [ ] [ ] [ ] / ( )i j m i j i j i j k m i j i k j kz z s z z z z z z z s z z z z z z= - - = - -

	 ( )θ1 2 3 4 1 2 3 1 2 4 3 4[ ] [ ] [ ] / ( )mz z z z s z z z z z z z z= - -

	 σ σ χ χ χ χ χ χ χ χ1 1 1 2 3 4 1 2 3 4( , , , )= = + + +

	 σ σ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ2 2 1 2 3 4 1 2 1 3 1 4 2 3 2 4 3 4( , , , )= = + + + + +

	 σ σ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ χ3 3 1 2 3 4 1 2 3 1 2 4 1 3 4 2 3 4( , , , )= = + + + 	 (3.11)

	 σ σ χ χ χ χ χ χ χ χ4 4 1 2 3 4 1 2 3 4( , , , )= =

	 σ σ χ χ χ σ σ χ χ1 2 3 1 2( , , ,0), ( , ,0,0); 1,4k k k k k= = =

В этом случае σ σ σ4 4 3 0.= = =  Пусть ; 1,6nf n =  – симметричный многочлен n-го 
порядка от переменных χ χ χ χ1 2 3 4, , , . Известно, что оно однозначно выражается через 
элементарные симметрические многочлены. Введя обозначения

σ σ σ σ1 2 3 4( , , , )n nf f= , σ σ σ1 2 3( , , ,0)n nf f= , σ σ1 2( , ,0,0); 1,6n nf f n= = 	 (3.12)

σ σ σ σ σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ

2 3 4 2 2
1 1 2 1 2 3 1 1 2 3 4 1 1 2 2 1 3 4

5 3 2 2 6 4 2 2 3
5 1 1 2 1 2 1 3 2 3 6 1 1 2 1 2 2

, , 2 , 3 2
4 3 3 2 , 5 6

f f f f

f f

= = - = - + = - + + -

= - + + - = - + -
	 (3.13)

и производя элементарные действия над столбцами определителя (3.9), получается 
совокупность уравнений

	
2 8( ) 2

, 1, 1
Det ; 1,m

ij ij i ji j
Det T K m m

==
= = ¥	 (3.14)

	 χ χ χ χ χ χ χ χ χ χ χ χ1 2 1 3 1 4 2 3 2 4 3 4( )( )( )( )( )( )K = - - - - - - 	 (3.15)

Выражения для ijm  приведены в приложении. Уравнения (3.9) эквивалентны урав­
нениям
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8

, 1
Det 0; 1,ij i j

m m
=

= = ¥	 (3.16)

Учитывая возможные соотношения между λ λ1 2,  и λ3, приходим к выводу, что урав­
нения (3.16) определяют частоты соответствующих видов колебаний. При 
λ λ λ λ1 2 3 ,= = =  уравнения (3.4) являются характеристическими уравнениями си­
стемы (2.1), а  уравнения (3.16)  – дисперсионными уравнениями задач (2.1)–(2.4) 
соответственно.

В разд.  6 исследованы асимптотики дисперсионных уравнений (3.16) при 
ε θ1 / 0m mR= ® (переход к колебаниям, локализованным на трех свободных сторо­
нах прямоугольной пластины с  шарнирно закрепленной четвертой стороной, или 
к колебаниям, локализованным на свободных краях цилиндрической панели с шар­
нирно закрепленной граничной образующей), и при θm s ® ¥  (переход к достаточно 
широкой цилиндрической панели с шарнирно закрепленной граничной образующей 
или к  колебаниям, локализованным на свободных краях цилиндрической панели 
с  шарнирно закрепленной граничной образующей). Для проверки достоверности 
асимптотических соотношений, найденных в разд. 6, в следующих двух пунктах ис­
следуются свободные планарные и  изгибные колебания прямоугольной пластины 
с шарнирно закрепленной стороной.

4. Планарные колебания ортотропной прямоугольной пластины с шарнирно закреп-
ленной стороной. Рассмотрим ортотропную прямоугольную пластину отнесенную 
к триортогональной системе прямолинейных координат α β γ( , , )  с началом в свобод­
ной торцевой плоскости таким образом, что координатная плоскость αβ  совпадает 
со срединной плоскостью пластины, а  главные направления упругости материала 
пластинки совпадают с координатными линиями (рис. 2). Пусть ,s l  являются шири­
ной и длиной пластины соответственно. Исследуются вопросы существования сво­
бодных планарных колебаний прямоугольных пластин с  шарнирно закрепленной 
стороной. В качестве исходных уравнений принимаются уравнения малых планар­
ных колебаний, которые соответствуют классической теории ортотропных пла­
стин [14]

	

∂ ∂ ∂
λ

∂α∂β∂α ∂β
∂ ∂ ∂

λ
∂α∂β ∂α ∂β

2 2 2
1 1 2

11 66 12 66 12 2

2 2 2
1 2 2

12 66 66 22 22 2

( )

( )

u u u
B B B B u

u u u
B B B B u

- - - + =

- + - - =

	 (4.1)

Рис. 2. Прямоугольная пластина с шарнирно закрепленной стороной
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Здесь α α(0 )l£ £  и  β β(0 )s< <  ортогональные прямолинейные координаты 
точки на средней плоскости; 1 ,u 2u  – проекции вектора перемещений в направлениях 
α и β соответственно; , , 1,2,6ikB i k =  коэффициенты упругости; λ ω ρ2= , где ω-уг­
ловая частота собственных колебаний, ρ-плотность материала. Граничные условия 
имеют вид [14]

	
α α

∂ ∂
∂α ∂β α β

1 12 2 2 1

11 0, 0,

0
l l

u B u u u
B

= =

¶ ¶
+ = + =

¶ ¶
	 (4.2)

	
β β

∂ ∂
∂α ∂β α β

1 2 2 112

11 0 0

0
u u u uB

B
= =

¶ ¶
+ = + =

¶ ¶
	 (4.3)

	
β

βα β 0
0

12 1 2

22
1 00,

s
s

B u u
u

B
=

=

¶ ¶
+

¶ ¶
== 	 (4.4)

Соотношения (4.2), (4.3) это условия свободных сторон при α 0,l=  и β 0=  соот­
ветственно. Соотношения (4.4) являются условиями шарнирного закрепления сто­
роны при β 0s= .

Задача (4.1)–(4.4) не допускает разделения переменных. Дифференциальный 
оператор, соответствующий этой задаче, самосопряженный и неотрицательно опре­
деленный. Поэтому, для нахождения собственных частот и  соответствующих соб­
ственных форм колебаний можно использовать обобщенный метод сведения к обык­
новенным дифференциальным уравнениям Канторовича–Власова [9–13].

Решения системы (4.1) ищутся в виде

	 θ α θ α θ β1 2( , ) { ( ), ( )}exp( ); 1,m m m m m m mu u u w v w y m¢= = +¥ 	 (4.5)

Здесь, θ α( ), 1,m mw m = ¥  определяются из (1.2)–(1.3). mu , mv ,y   – неизвестные кон­
станты. Для этой задачи, граничные условия (4.2) выполняются автоматически. Под­
ставив (4.5) в уравнение (4.1), полученные уравнения умножаются на вектор-функ­
цию ( )θ α θ α( ), ( )m m m mw w¢  скалярным образом и  интегрируются в  пределах от 0 до l . 
В результате получаются системы уравнений

	
( )

β η

β β η

2 266 12 66

11 11

2 212 66 66

22 22

 1,  

( ) 0

0; ,

m m m m

m m m m m

B B B
y u yv

B B

B B B
yu y v

B B
m

æ ö +÷ç ÷¢¢ç - + - =÷ç ÷÷çè ø
æ ö+ ÷ç ÷¢ ¢ç- - - =÷ç ÷÷çè

= ¥
ø

	 (4.6)

где ( )η λ θ2 2
66/m mB= , и βm

¢ ,βm
¢¢ определяются из (1.4). Приравнивая нулю определитель 

системы (4.6), находятся характеристические уравнения системы уравнений (4.1):

η β η β η4 2 2 2 2 222 66 6622
2

11 11 11

( ) 0; 1,m m m m m m

B B BB
c y B y y m

B B B

æ ö+ ÷ç ÷¢ ¢¢ç= - + + - - = = +¥÷ç ÷÷çè ø
	 (4.7)

Пусть 1y  и  2y  – различные корни уравнения. (4.7) с неположительными действитель­
ными частями и  2 ; 1,2j jy y j+ = - = . В  качестве решений систем (4.6) при 

; 1,4jy y j= =  возьмем

	 β η β( ) 2 2 ( )66 12 66

22 22

( ), ; 1 ,, , 14j j
m j m m m j

B B B
u y y

B B
mv j = ¥

+
¢ ¢= - - = = 	 (4.8)

Решение задачи (4.1)–(4.4) можно представить в виде
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	 ( ) ( )θ α θ β θ α θ β
4 4( ) ( )

1 2 1 1
, ( )exp( ) , ( )exp( )j j

m m m m j j m m m m j jj j
u u u w y w v w y w

= =
¢= å å ,	 (4.9)

где θ α( )mw  определены в (1.2). Граничные условия (4.2) выполняются автоматически.
Подставим уравнение (4.9) в граничные условия (4.3)–(4.4). Каждое полученное 

уравнение умножается на θ α( )mw  или на θ α( )mw ¢ , а затем интегрируется в пределах от 
0 до l . В результате получаются системы уравнений

4 4 4 4
( ) ( ) ( ) ( )
1 1 2 4

1 1 1 1
0, exp( ) 0, 0, exp( ) 0; 1,m m m m

j j j j j j j j j j
j j j j

R w R z w R w R z w m
= = = =

= = = = = +¥å å å å 	 (4.10)
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β η θ

( ) 2 2 ( ) 2 26612 12
1 2

22 22 22

( ) 2 266
4
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( ), ; 1,4

m m
j j m m j j j m m

m
j j m m j m j
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R y R y y

B B B
B

R y z y s j
B

æ ö÷ç ÷¢ ¢ç= + - = + + ÷ç ÷÷çè ø

¢= - - = =

	 (4.11)

Приравнивая нулю определитель ( )∆ m
e  системы (4.10) и производя элементарные дей­

ствия со столбцами определителя, получаем следующие дисперсионные уравнения

	 ∆
42

1 2 2 1 ,
exp( )( ) Det 0e ij i j

z z y y l= - - - = 	 (4.12)

	 ( )
11 11 12 1 2 13 11 1 14 12 2 11 1 2, , exp( ), exp( ) [ ]ml R l y y l l z l l z l z z= = + = = +
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	 (4.13)

Уравнения (4.12) эквивалентны уравнениям
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	 (4.14)
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B B B
K y y

B B
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B B B
K y y
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æ ö¢¢ ¢- ÷ç ÷ç¢= - - +÷ç ÷ç ÷çè ø
	 (4.15)

Если 1y  и  2y  являются корнями уравнения. (4.9) с  отрицательными действитель­
ными частями, то при θm s ® ¥ корни уравнения (4.14) аппроксимируются корнями 
уравнений
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	 ( ) β β
η β η η η

2
(2) 2 2 211 22 12

2 1 2
22 66

1( ) ,0;m m
m m m m m m

B B B
K my y

B B

æ ö¢¢ ¢- ÷ç ÷ç¢= - - ¥- =÷ç ÷ç ÷
=

çè ø
	 (4.16)

Уравнения (4.16) являются аналогом уравнений Рэлея для достаточно длинной ор­
тотропной прямоугольной пластинки со свободными тремя сторонами. Таким обра­
зом, собственные частоты задач (4.1)–(4.4) можно найти из (4.14).

Для нахождения соответствующих собственных мод коэффициенты jw ; 1,4j =  
необходимо определить из систем уравнений (4.10) и  подставить в  (4.9). Можно 
взять, например
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	 (4.17)
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	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4 2 1 11 22 12 21 2 11 22 12 21exp( ), ,m m m m m m m m m mw z R R R R R R R R R R= = - = +

как решения систем уравнений (4.12) при заданной безразмерной характеристике ηm 
собственной частотной.

5. Изгибные колебания ортотропной прямоугольной пластины с шарнирно  крепленной 
стороной. Рассматривается ортотропная прямоугольная пластина толщиной h, шири­
ной 0s  и длиной l  (рис. 2). Исследуется задача о существовании свободных изгибных 
колебаний прямоугольной пластины с шарнирно закрепленной стороной. В качестве 
исходного уравнения, принимаются уравнения малоамплитудных изгибных колеба­
ний классической теории ортотропных пластин [16]

	 µ λ
α α β β

4 4 4
4 3 3 3

11 12 66 22 34 2 2 4
2( 2 ) ,

u u u
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æ ö¶ ¶ ¶ ÷ç ÷ç + + + =÷ç ÷ç ÷ç ¶ ¶ ¶ ¶è ø

	 (5.1)

где α α(0 )l£ £  и β β(0 )s< <  – ортогональные прямолинейные координаты точки 
срединной плоскости пластины; 3u  – нормальная составляющая вектора перемеще­
ния точки срединной плоскости; ; , 1,2,6ikB i k =  – коэффициенты упругости материа­
ла; µ4 2 / 12h=  (h  – толщина пластинки); λ ω ρ2=  где ω  – угловая частота собствен­
ных колебаний, ρ- плотность материала. Граничные условия имеют вид:
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Соотношения (5.2), (5.3) являются условиями свободных сторон при α 0,l=  и β 0=  
соответственно, а  условия (5.4) указывают на то, что сторона β 0s=  шарнирно за­
креплена.
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Задача (5.1)–(5.4) не допускает разделения переменных. Дифференциальный опе­
ратор, соответствующий этой задаче, самосопряженный и неотрицательно опреде­
ленный. Поэтому для нахождения собственных частот и собственных мод колебаний 
можно использовать обобщенный метод сведения к  обыкновенным дифференци­
альным уравнениям Канторовича–Власова [9–13]. Решение уравнения (5.1) ищется 
в виде
	 θ α θ β3 ( )exp( ); 1, ,m m mu w y m= = +¥ 	 (5.5)

где θ α( )mw  определены в (1.2), а  y  – неизвестная константа. Граничные условия (5.2) 
выполняются автоматически. Подставив (5.5) в уравнение (5.1), умножив получен­
ные уравнения на θ α( )mw  и проинтегрировав их в пределах от 0 до l, получаются ха­
рактеристические уравнения

	 β β β η2 4 2 212 66 6611
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где θm  и β β,m m
¢ ¢¢  определены в  (1.3)–(1.4) соответственно. Пусть 3y  и  4y  различные 

корни уравнения (5.6) с  неположительными действительными частями и 
2 , 3,4.j jy y j+ = - =  Решения задачи (5.1)–(5.4) ищутся в виде

	 θ α θ β
6

3 3
( )exp( ) 1,;m m m j jj

u w y w m
=

= ¥= å 	 (5.8)

Вставив уравнение (5.8) в граничные условия (5.3)–(5.4) и после умножения полу­
ченных уравнений на θ α( )mw  и их интегрирования в пределах от 0 до l получаются 
системы уравнений

( ) ( )
6 6 6 6

( ) ( ) ( ) ( )
3 4 7 8

3 3 3 3
ex0, 0, 0, 0;xp e p 1,m m m m

j j j j j j j j
j j

j
j

j
j

R z zR mW R W W R W
= = = =

¥= = = = =å å å å 	 (5.9)

	
( )

β β

θ

( ) 2 ( ) 3 12 6612
3 4

22 22
( ) ( )
7 8 3

4
,

1, , ; 3,6 

m m
j j m j j m j

m m
j j

m
j mj j

B BB
R y R y y

B B

R R R z y s j

+
¢ ¢= - = -

= = = =

	 (5.10)

Приравнивая нулю определители ( )∆ m
b  систем (5.9) и производя элементарные дей­

ствия над столбцами определителя, получаются дисперсионные уравнения

	 ( ) 42
3 4 4 3 ,

exp( )( ) 0 ,; 1ij i j

m
b z z y y F b m∆ - - = == - ¥ 	 (5.11)

	 ( )
11 33 12 3 4 13 11 3 14 12 4 11 3 4, , exp( ), exp( ) [ ]mb R b y y b b z b b z b z z= = + = = +

β

θ

( )
21 43 22 3 4 12 22 23 21 3 24 22 4 21 3 4

31 3 32 3 4 33 34 41 13 42 14

43 11 44 12 3 4 4 3 4 3

, / , exp( ), exp( ) [ ]
exp( ), [ ], 1, 0; ,

, ; [ ] (exp( ) exp( )) / ( )

m
m

m

b R b y y B B b b z b b z b z z
b z b z z b b b b b b
b b b b z z s z z z z

¢= = + = - = - -

= = = = = =

= = = - -

	 (5.12)

Уравнения (5.11) эквивалентны уравнениям

	
Det ( ) ( exp( ( )))

,
b K z z

K

y y

y y

ij i j m m=
= − + +{+( )

+ +( )
1

4

1
2

3 43 4

3 4

1 2η

55
2

3 4 3 4 0 1m m z z mz z( ) (exp( ) exp( )) ; ,η + = = ∞


}

	 (5.13)



70 СВОБОДНЫЕ КОЛЕБАНИЯ ТОНКОЙ УПРУГОЙ ОРТОТРОПНОЙ…

	
( ) ( )

( ) ( )

η β β

η β β

22 2 2 66 12
1 3 4 3 4

22 22

22 2 2 66 12
5 3 4 3 4

22 22

4

4

m m m m

m m m m

B B
K y y y y

B B

B B
K y y y y

B B

æ ö÷ç ÷¢ ¢= + -ç ÷ç ÷÷çè ø
æ ö÷ç ÷¢ ¢= - -ç ÷ç ÷÷çè ø

	 (5.14)

Если 3y  и  4y  являются корнями уравнения (5.6) с отрицательными действительными 
частями, то при θm s ® ¥ корни уравнения. (5.13) аппроксимируются корнями урав­
нений

	 ( )η β β
2

2 2 2 266 12
1 3 4 3 4

22 22

4 0; 1,m m m m

B B
K y y y y m

B B

æ ö÷ç ÷¢ ¢= + -ç = = ¥÷ç ÷÷çè ø
	 (5.15)

Уравнения (5.15) являются аналогами уравнений Коненкова для достаточно длинной 
ортотропной прямоугольной пластины со свободными тремя сторонами (ср. с [7, 8, 
17–20]). Таким образом, собственные частоты задачи (5.1)–(5.4) можно найти из 
(5.13). Для нахождения соответствующих собственных мод коэффициенты , 3,6jw j =  
необходимо определить из систем уравнений (5.9) и  подставить в  уравнения (5.8). 
В качестве решения системы уравнений (5.9) при заданной безразмерной характери­
стике ηm  бственной частотной, можно принять

	
( )

( )

( ) ( ) ( ) ( )
3 3 4 4 3 34 44 4

3 ( )
3

34

3
( ) ( ) ( )
4 3 3 43 4 43 3

exp( 2 ) exp( ) 2 exp( )
exp(2 ) 2 exp( )

m m m m

m m m m

m

m

R z z R z R R z
W

R

R

R R R z R z z

+ + -
=

- + +

	
( ) ( ) ( ) ( )
4 4 3 3 4 34 43 3

4 ( ) ( ) ( ) ( )
3 4 3 34 43 3 4

exp( ) exp(2 ) 2 exp( )
exp(2 ) 2 exp( )

m m m m

m m m m

R z R z z R R z
W

R R z R R z z

- + -
=

- + +
	 (5.16)

	
( )

( )

( ) ( ) ( ) ( )
3 3 4 4 34 44 3 4

5 ( ) ( ) ( ) ( )
3 4 3 34 4 4

34

3 3 33

exp( )[ exp(2 ) 2 exp( )]
exp(2 ) 2 exp( )

m m m m

m m m m

m

m

z R R z R R z z
W

R

R

R R z R R z z

+ - +
=

- + +

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
6 4 3 33 44 34 43 4 33 44 34 43exp( ); ,m m m m m m m m m mW z R R R R R R R R R R= = - = +

6. Асимптотика дисперсионных уравнений (3.16) при ε 0m ® . Используя предыду­
щие формулы, предполагается, что η η η η1 2 3m m m m= = = . Тогда при ε 0m ®  уравне­
ния (3.4) преобразуются в совокупность уравнений

	 η β η β η4 2 2 2 2 222 66 6622
2

11 11 11

( ) 0; 1,m m m m m m

B B BB
c y B y y m

B B B

æ ö+ ÷ç ÷¢ ¢¢ç= - + + - - = = +¥÷ç ÷÷çè ø
	 (6.1)

	 β β β η2 4 2 212 66 6611

22 22 22

2( 2 )
0; 1,mm m m m m

B B BB
R a y y m

B B B

æ ö+ ÷ç ÷¢ ¢ ¢¢ç= - + - = = +¥÷ç ÷÷çè ø
	 (6.2)

Здесь предельный переход ε 0m ®  понимается в том смысле, что при фиксирова­
нии радиуса R и  0b s=  – расстояния между граничными образующими цилиндриче­
ской панели, можно перейти к цилиндрической панели радиуса R nR¢ =  и к пределу 
ε θ ε1 / ( ) / 0m m mn R n¢ = = ®  при .n ® ¥

Уравнения (6.1) и  (6.2) являются характеристическими уравнениями уравнений 
планарных и изгибных колебаний ортотропных пластин со свободными противопо­
ложными сторонами соответственно. Корни уравнений (6.1) и (6.2) с неположитель­
ными действительными частями, как в разд. 3 и 4, обозначаются 1 2,y y  и  3 4,y y  соот­
ветственно. Так же, как и в [16], доказывается, что при
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	 ε 1; ,m i jy y i j¹ ¹ 	 (6.3)

Корни χ2 уравнений (3.4) можно представить в виде

	 χ α ε β ε2 2 ( ) 2 ( ) 4 ...; 1,4, 1,m m
i i i m i my i m= + + + = = +¥	 (6.4)

При условии (6.3), учитывая соотношения (3.8), (3.14) и (6.4) и тот факт, что

	 ε( ) ( ) ( ) ( ) 2
3 4 7 8 ( ); 1,2,m m m m

j j j j mM M M M O j= = = = = 	 (6.5)

уравнение (3.16) можно привести к виду

	 η η ε
8 4 42 2 2 2 2

3 , 1 , 1, 1
Det ( ) ( )Det Det ( ) 0; 1, ,ij m m m ij ij mi j i ji j

m N K l b O m
= ==

= + = = +¥ 	 (6.6)

где 
4

, 1
Det ij i j

l
=

и 
4

, 1
Det ij i j

b
=

 определяются из формул (4.14) и (5.13) соответственно, и

	 η2
3 1 3 2 4 1 4 2( ) ( )( )( )( )mN y y y y y y y y= + + + +

2
2 2

2 2 2 2 266 66 12 12 66 6611 22
3

22 22 11 11 11 66

2
211 22 12 12 66 22 66

22 66 22

3 4
( ) ( )

2

m m m m m m m m

m m
m

B B B B B BB B
K a

B B B B B B

B B B B B B B
B B B

η β η β η η β

β β β
η

ìï æ öæ öæ öï + + ÷ç ÷ç÷ï çï ÷÷ç÷ ç¢ ¢¢ ¢ç= - - + + +÷í ÷ç÷ çç ÷÷÷çï ç÷ç ÷÷ç ÷çè ø è øï è øïïî
æ ö¢¢ ¢ ¢- - + ÷ç ÷ç+ - ÷çççè ø

2 2
2 266 12 12 66 6622

11 11 11 66

2
2 2 2 211 22 12 12 66 66 12 6622

11 11 66 11 66

3 4

3

m m

m m
m m m m m

B B B B BB
a

B B B B

B B B B B B B BB
a

B B B B B

B

η β

β β β
η η β η β

æ öæ ö+ + ÷ç ÷ç ÷÷ç ç ¢+ + +÷÷ç ç ÷÷ ÷ç ç ÷÷ ÷ç ÷ç è øè ø
æ öæ öæ ö¢¢ ¢ ¢- - + ÷ç ÷ ÷ç ç ÷÷ ÷ç ¢¢ ¢ç ç+ - + - + +÷÷ ÷ç ç ç ÷÷ ÷ç ÷ ÷ç ç ÷ç è øè øè ø

+
( )

222
2 2 2 211 22 12 12 66 66 12 6622 22

11 11 66 11 66 12 66

3m m
m m m m m

m

B B B B B B B B B
a

B B B B B B B
β β β

η η β η β
β

üïæ öæ öæ öæ ö¢¢ ¢ ¢ ï- - + ÷ç÷ç ÷ ÷ç ç ï ÷÷ ç÷ ÷ç ¢¢ ¢ç ç- + - + ÷ý÷ ç÷ ÷ç ÷ç ç ÷÷ ÷ çïç ÷ ÷ ÷ç ç ¢÷ç + ÷è øè ø çè ø ïè øïþ

	(6.7)

Из уравнения (6.6) следует, что при ε 0m ®  уравнения (3.16) распадаются на сово­
купность уравнений

	 η
4 4 2

3, 1 , 1
Det 0, Det 0, ( ) 0; 1,ij ij m mi j i j

l b K m
= =

= = = = +¥	 (6.8)

Здесь первые два уравнения являются дисперсионными уравнениями планар­
ных и изгибных собственных колебаний для ортотропной прямоугольной пластины 
с шарнирно закрепленной стороной соответственно.

Корни третьего уравнения соответствуют планарным колебаниям цилиндриче­
ской панели. Третье уравнение возникает в  результате использования уравнения 
соответствующей классической теории ортотропных цилиндрических оболочек.

Если 1 2,y y  и  3 4,y y  являются корнями уравнений (6.1) и (6.2) соответственно с от­
рицательными действительными частями, то при θm s ® ¥ , уравнения (3.16) и (6.6) 
преобразуются в уравнения

( )
2

8 2 2 2 2 2 2 212 66
0 1

'
2 3, 1

22

2

2

4

1

Det ( ) ( ) ( ) ( ) ( ) ( )

( ) (exp( )) 0; 1,

ij m m m m m m m m mi j

m j

m

j

m

B B
m N N Q K K K

B

O O z m

η η η η ηη

ε

β η
=

=

æ ö+ ÷ç ÷ç= +÷ç ÷÷çè ø

+ =

-

+ = +¥å
	(6.9)

	 ( ) ( )( )( )2 2
0 1 2 3 4 m mN N y y y yη η= + +
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Заметим, что 1mη =  принадлежит предельному спектру безмоментного оператора, 
соответствующего задаче (2.1)–(2.4). Этот факт оправдывает существование множи­
теля ( )2

m mβ η¢ -  в формулах (4.14) и (6.9) (ср. [8]).
Из уравнений (6.9) следует, что при ε 0m ®  и  θm s ® ¥ корни дисперсионных 

уравнений (3.16) аппроксимируются корнями уравнений

	 η η η2 2 2
1 2 3( ) 0, ( ) 0, ( ) 0; 1,m m m m m mK K K m= = = = +¥	 (6.10)

Первые два уравнения (6.10) являются дисперсионными уравнениями изгибных 
и планарных колебаний достаточно широкой ортотропной прямоугольной пластины 
со свободными тремя сторонами (см. уравнения (4.14) и (5.13)). Следовательно, для 
малых εm и больших θm s  приближенные значения корней уравнений (3.16) соответ­
ствуют корням уравнений. (6.8) и уравнения (6.10).

7. Численные результаты. В табл. 1 приведены значения некоторых mη  корней урав­
нений (6.8) для ортотропной прямоугольной пластины из боропластика с шарнирно 
закрепленной стороной с параметрами [15]

	
3 3 11 2

1
10 9

2 1 2

2 10 / ; 2.646 10 /
1.323 10 ; 9.604 10 ; 0.2, 0.01

E
G

ρ

Ε ν ν

= × = ×

= × = × = =

кг м Н м
	 (7.1)

и геометрическими параметрами: 0 04; 5, 15.l s s= = =

Таблица 1. Корни уравнений ( )2
3 0m mK =η  и характеристики собственных частот прямоугольной 

пластины с шарнирно закрепленной стороной

m θm ( )2
3 0m mK =η

4

0, 1
4

0, 1

Det 0, 5

Det 0, 15

ij i j

ij i j

b s

b s

=

=

= =

= =

4

0, 1
4

0, 1

Det 0, 5

Det 0, 15

ij i j

ij i j

l s

l s

=

=

= =

= =

1 1.95473 4.25538 0.04885
0.04873

–
–

2 2.74891 4.94711 0.08583
0.08576

–
–

3 3.52957 4.81097 0.10927
0.10922

–
–

4 4.27693 4.75564 0.12794
0.12789

–
–

5 5.04581 4.80318 0.15356
0.15352

–
–

6 6.09849 4.78770 0.18491
0.18488

0.98694
0.98694

12 12.7680 4.78787 0.38733
0.38731

0.98696
0.98696

13 13.8782 4.78717 0.42100
0.42099

0.98696
0.98696

14 14.9887 4.78640 0.45469
0.45468

0.98696
0.98696

15 16.0962 4.78555 0.48828
0.48827

0.98696
0.98696

16 17.1935 4.78465 0.52157
0.52157

0.98696
0.98696
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В табл. 2 приведены некоторые безразмерные характеристики собственных значе­
ний ηm для преимущественно изгибных, преимущественно планарных и  несимме­
тричных колебаний ортотропных цилиндрических панелей из боропластика с шар­
нирно закрепленной граничной образующей с параметрами (7.1) и геометрическими 
параметрами: 40R = , 4l = , 5.00326s = , 15.0893.s =

Замечание. Собственные значения ηm, соответствующие корням уравнений 
K mm m3

2 0 1� �( ) = =; , , имеют другие значения порядка 810 , которые не приведены.
В табл. 2 после характеристик собственных частот указан тип колебании: “b”  – 

преимущественно изгибный, “e” – преимущественно планарный и “n” – для нового 
типа колебаний. Модули упругости 1E  и  2E  соответствуют направлениям вдоль обра­
зующей и направляющей соответственно [15].

Таблица 2. Характеристики собственных частот преимущественно изгибных, преимущественно 
планарных и несимметричных колебаний цилиндрической панели

m θm

1 2

3

0,

5.00326
15.0893

m m

m m

s
s

η η
η η

= =

=

=
=

η η η
η

1 2

3 0
5.00326
15.0893

m m m

m

s
s

= =

=

=
=

η η η η1 2 3

5.00326
15.0893

m m m m

s
s

= = =

=
=

1 1.95391 0.05340 b
0.05117 b

–
–

4.25538 n

0.05006 b –
0.05006 b –
4.25538 n

2 2.74776 0.08690 b
0.08630 b

–
–

4.94711 n

0.08690 b –
0.08630 b –
4.94711 n

3 3.52810 0.10990 b
0.10937 b

–
–

4.81097 n

0.10990 b –
0.10937 b –
4.81097 n

4 4.27542 0.12807 b
0.12803 b

–
–

4.75564 n

0.12805 b –
0.12803 b –
4.75564 n

5 5.04581 0.15360 b
0.15363 b

–
–

4.80318 n

0.15360 b –
0.15360 b –
4.80318 n

6 6.09849 0.18497 b
0.18494 b

0.98694 e
0.98691 e
4.78770 n

0.18494 b 0.98695 e
0.18494 b 0.98692 e
4.78770 n

12 12.7679 038733 b
0.38732 b

0.98696 e
0.98696 e
4.78787 n

0.38733 b 0.98696 e
0.38732 b 0.98696 e
4.78787 n

13 13.8785 0.42102 b
0.42101 b

0.98696 e
0.98696 e
4.78717 n

0.42102 b 0.98696 e
0.42100 b 0.98696 e
4.78717 n

14 14.9864 0.45462 b
0.45461 b

0.98696 e
0.98696 e
4.78640 n

0.45462 b 0.98696 e
0.45461 b 0.98696 e
4.78640 n

15 16.1102 0.48871 b
0.48870 b

0.98696 e
0.98696 e
4.78555 n

0.48871 b 0.98696 e
0.48870 b 0.98696 e
4.78555 n

16 17.2065 0.52197 b
0.52196 b

0.98696 e
0.98696 e
4.78465 n

0.52197 b 0.98696 e
0.52196 b 0.98696 e
4.78465 n
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Случай η η η η1 2 3m m m m= = =  в  табл. 2 соответствует задаче (2.1)–(2.4). Случай 
η η1 2 0m m= = , η η3m m=  соответствует задаче (2.1)–(2.4), где отсутствуют тангенци­
альные компоненты силы инерции, т.е. мы имеем преимущественно изгибный тип 
колебаний. Случай η η η η1 2 3 0m m m m= = =,  соответствует преимущественно пла­
нарному типу колебаний.

Для изотропных материалов справедливы следующие равенства:

	 υ
υ 66 6612 12

11 22 11 22

1,
2

B BB B
B B B B

-
= = = = 	 (7.2)

Следовательно, в  дисперсионных уравнениях и  расчетах характеристик можно 
положить
	 B B B B11 22 12 661 1 2= = = = −, , ( )υ υ

Заключение. Численные расчеты показывают, что первые собственные частоты, 
локализованные на свободной образующей цилиндрических панели с  шарнирно 
закрепленным краевым образующим, являются частотами преимущественно изгиб­
ного типа. Наряду с  первыми частотами квазипоперечных колебаний существуют 
частоты незатухающих квазитангенциальных колебаний, которые не приведены 
в таблицах.

С увеличением m  эти колебания становятся рэлеевского типа. Анализ численных 
результатов показывает, что при ε 0m ®  свободные колебания цилиндрической па­
нели с шарнирно закрепленным краевым образующим распадаются на квазипопе­
речные и квазитангенциальные колебания, а их частоты стремятся к частотам прямо­
угольной пластины с шарнирно закрепленной стороной.

Из численных результатов следует, что асимптотические формулы (6.6) диспер­
сионного уравнения (3.16) и  представленный здесь механизм являются хорошими 
ориентирами для нахождения собственных частот задачи (2.1)–(2.4). Первые соб­
ственные частоты колебаний цилиндрической панели с  шарнирно закрепленным 
образующим зависят от выбранных базисных функций, удовлетворяющих условиям 
свободных краев на торцах.

При θ 0m ®  частоты колебаний свободной образующей конечной цилиндриче­
ской панели с шарнирно закрепленным краевым образующим становятся практиче­
ски независимыми от базисных функций и типа закрепления другой концевой обра­
зующей [20].

Заметим, что безразмерные характеристики ηm
1  и ηm

2  задач с жестко закрепленной 
граничной образующей и шарнирно закрепленной граничной образующей соответ­
ственно, удовлетворяют неравенствам η ηm m m1 2 1≥ = ∞; , , т.е. в цилиндрический па­
нели с шарнирно закрепленной граничной образующей могут распространятся вол­
ны с  большей длиной волны по свободной образующей, чем в  цилиндрический 
панели с жестко защемленной граничной образующей [20].
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Free Vibrations of Thin Elastic Orthotropic Cylindrical Panel 
with Hinge-Mounted Edge Generator
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Using the system of equations corresponding to the classical theory of orthotropic cy­
lindrical shells, the free vibrations of a  thin elastic orthotropic cylindrical panel with 
hinge-mounted edge generator are investigated. To calculate the natural frequencies and 
to identify the respective natural modes, the generalized Kantorovich–Vlasov method of 
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reduction to ordinary differential equations is used. Dispersion equations for finding the 
natural frequencies of possible types of vibrations are derived. An asymptotic relation be­
tween the dispersion equations of the problems at hand and the analogous problem for 
a rectangular plate is established. A mechanism is given by which possible types of edge 
oscillations are distinguished. As examples, the values of dimensionless characteristics of 
natural frequencies are derived for an orthotropic cylindrical panels.

Keywords: free vibrations, cylindrical panel, hinged fastening
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Приложение. Аналитические выражения для ijm приведены ниже:

	 χ χ χ6 4 2
11 1 1 1 2 1 3 12 5 1 3 2 1

13 4 1 2 2 14 3 1 1

,
;

m H d d d m Hf d f d f
m Hf d f d m Hf d f

= + + + = + +

= + + = +

	 χ χ χ5 3
21 1 4 1 5 1 22 4 4 2 5 23 3 4 1 24 2 4, , ,m T d d m Tf d f d m Tf d f m Tf d= + + = + + = + = +

	 χ χ χ6 4 2
31 1 6 1 7 1 8 32 5 6 3 7 1,m F d d d m Ff d f d f= + + + = + +

	 33 4 6 2 7 34 3 6 1,m Ff d f d m F f d f= + + = +

	 χ χ χ χ7 5 3
41 1 9 1 10 1 11 1 42 6 9 4 10 2 11,m F d d d m Ff d f d f d= + + + = + + +

	 43 5 9 3 10 1 44 4 9 2 10,m Ff d f d f m Ff d f d= + + = + +

	

1 1
5 1 1 6 2 2 1 1 2

1
7 3 3 2 2 3 1 1 2 3

1
8 4 4 3 3 4 2 2 3 4 1 1 2 3 4

( 1) exp( ), ( 1) ( exp( ) [ ])
( 1) ( exp( ) [ ] [ ])
( 1) ( exp( ) [ ] [ ] [ ]); 1,4

i i
i i i i i

i
i i i i

i
i i i i i

m m z m m z m z z

m m z m z z m z z z

m m z m z z m z z z m z z z z i

- -

-

-

= - = - +

= - + +

= - + + + =

	 (П.1)

	 5 1 ; 1,4j jn m j= =

	 13
4 2

61 1 1 1 2 6 312 6 2 1 64 ,  ,  ,  n S g gf g fg n S n S f n Sf= + + += = + = 

	
ε χ χ ε

ε ε

2 2 4 2 2 2
71 1 3 1 4 72 3 3 1

2 2 2 2
73 2 3 74 1 8 3 

(1 ) , (
4

1 )
( ; 11 ) , (1 ) , ,

m m

m jm j

n F a g g n F a f g f

n F f na f g n F a m j

= + + + = + +

= + + = + = =   

	
1 1 1 2 2 2 1 1 2

3 3 3 2 2 3 1 1 2 3

4 4 4 3 3 4 2 2 3 4 1 1 2 3 4

exp( ), exp( ) [ ]
exp( ) [ ] [ ]
exp( ) [ ] [ ] [ ]; 5,8

i i i i i

i i i i

i i i i i

m n z m n z n z z
m n z n z z n z z z

m n z n z z n z z z n z z z z i

= = +

= + +

= + + + =
	 5,4 5, 6,4 6, 7,4 7, 8,4 8,, , , ; 1,4j j j j j j j jm n m n m n m n j+ + + += = = = =

	 2 2 212 66 2222 12 22 22

11 11 66 11 11 66

( )
, , ,

B B BB B B B
H a T a F S a

B B B B B B
+

= - = = =

	 ( )β β β
η ε

2 2
2 2 211 22 12 66 22

1 1
11 66 11

4m m
m m

B B B B B
d a

B B B

æ ö¢¢ ¢ ¢- + ÷ç ÷ç= - + ÷ç ÷ç ÷çè ø

	
d

B
B

a
B B

B
B
B

Bm m m2
66

11
2
2 2 12 66

22

22

11
1
2

1

4
= − + ′

+
−










−� � �

−− −
′′ − ′ + ′






� �

� � �
m m

m ma
B
B

B B B B
B B

2 2 22

11
1
2 11 22 12

2
66
2

11 22

4







78 СВОБОДНЫЕ КОЛЕБАНИЯ ТОНКОЙ УПРУГОЙ ОРТОТРОПНОЙ…

	 ( ) β β
δ β η η δ ε

2
2 2 2 211 22 12 66

3 2 1
11 22 11

, 1 4m m
m m m m m m

B B B B
d a

B B B

æ ö¢¢ ¢- ÷ç ÷ç¢= - - - = +÷ç ÷ç ÷çè ø

	 ε β η2 2 222 12 12 22
4 2 1

11 66 11 11

2
m m m

B B B B
d a B

B B B B

æ ö÷ç ÷¢ç= + - - ÷ç ÷÷çè ø

	
d

B
B

B
B

B B B
B B

a
B

m m
m m

5
22

11
1
2 12

11
2
2 11 22 12

2

11 66

2 12 4

= + −
′′ − ′

+

+
+

� �
� �

BB
B

B
B

B
B

B
Bm m m m m

66

22

22

11
1
2 22

66

12

11

24
′ − ′′









− ′� � � � � aa2

	 η η ε2 2 26622 22
6 1 2 1

11 11 11
m m m

BB B
d B

B B B
= + + -

	
d

B
B

B
B

B
B
Bm m m m7 2

2 66

11
1
2 12

22
2

22

1

= − ′ − ′′









+ ′ −( )� � � � �

11
1
2 66

11
2
2

2 2 12 66

11 22

2
4

� �

� �

m m

m m

B
B

a
B B
B B

B

−









+

+ ′( ) − 11
22

11
1
2+











B
B m�

	 β η β δ η β2 26612
8 2 1

22 11

( )m m m m m

BB
d

B B

æ ö÷ç ÷¢ ¢ ¢¢ç= - - - ÷ç ÷÷çè ø

	 η η ε β2 2 266 6622 22
9 1 2 1

11 11 11 11

4
m m m m

B BB B
d B

B B B B
¢= + + - -

	

2 2 2 266 12 66 6622
10 2 1 2 1 2

11 22 11 11

2 266 22
1 1

11 11

4
( )

4

m m m m m m

m m

B B B BB
d B

B B B B

B B
B

B B

η β η β β η η

ε β η

æ ö æ ö+÷ ÷ç ç÷ ÷¢ ¢¢ ¢ç ç= - - + - - -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø
æ ö÷ç ÷¢ç+ + - ÷ç ÷÷çè ø

	 ε β η β η β η β2 2 2 266 66 12 66 66
11 1 1 2 1

22 11 22 11

4
4 ( )m m m m m m m

B B B B B
d B

B B B B

æ ö æ ö+÷ ÷ç ç÷ ÷¢ ¢ ¢ ¢¢ç ç= - - - -÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

	
( )( )

ε β β δ η12 66 12 662 2 2 212 22 22 22
1 2 2

11 66 11 11 66 11

4
, ( )m m m m m

B B B BB B B B
g a a g

B B B B B B

+ +
¢ ¢= - - = - -

	 ( ) β β
ε η η ε

2
2 2 2 2 2 266 11 22 6622

3 1 2 2
11 11 11 66

4
1 m

m m m m

B B B BB
g a B a

B B B B
¢¢ ¢+

= + + - -

	 η β η β ε β η β2 2 2 2 266 66 22
4 2 1 1

11 22 11

( ) 4m m m m m m m

B B B
g a

B B B

æ ö æ ö÷ ÷ç ç÷ ÷¢ ¢¢ ¢ ¢¢ç= - - - ç -÷ ÷ç ç÷ ÷÷÷ çç è øè ø


