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В работе построено точное решение статической контактной задачи о действии 
с  трением жесткого клиновидного штампа, занимающего первый квадрант, на 
слой изотропного композитного материала.
В отличие от многочисленных, в  основном безуспешных, попыток решения 
этой и подобных задач аналитическими или численными методами, позволяв-
шими выявлять лишь частичные свойства решения этой задачи, метод блочно-
го элемента дал возможность вскрыть полную структуру ее решения. В работе 
доказано, что полученное решение точно удовлетворяет двумерному уравне-
нию Винера–Хопфа для произвольной правой части. Расчет показателя осо-
бенности концентрации контактных напряжений в этой точке близок к значе-
ниям, рассчитанным численными методами в ряде работ. Доказано, что зона 
вблизи вершины штампа имеет превосходящую податливость при внедрении 
штампа в среду, по сравнению с удаленными зонами. Развитый метод приме-
ним для линейно упругих материалов и кристаллов, допускающих построение 
функции Грина и сводящихся к двумерным интегральным уравнениям Вине-
ра–Хопфа.
Установление общего вида решения рассмотренной контактной задачи открывает 
возможность изучения предвестников повышения сейсмичности в горных терри-
ториях, а также совершенствования численных методов для получения более точ-
ных решений усложненных контактных задач в инженерной практике.
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1. Введение. Смешанные задачи, в том числе контактные задачи, играют важную 
роль в  самых разных областях практики. Они возникают в  проблемах прочности 
и разрушения [1], распространения волн в упругих телах [2], акустике [3], неразруша-
ющих методах контроля [4], теории рассеивания электромагнитных волн и создании 
элементной базы электроники [5], теории волн в жидкости [6, 7], геофизике [8], три-
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бологии [9, 10]. Исследования различных контактных задач выполнялись как анали-
тическими, так и численными методами в работах [9–21].

Для случаев слоистых сред построение функций Грина осуществляется примене-
нием интегральных преобразований Фурье. Заметим, что символ α β( , )K  двумерного 
интегрального уравнения в  рассматриваемой контактной задаче является изотроп-
ным при кулоновском коэффициенте трения 0p =  и  является анизотропным при 

0p > , так как его вид зависит от вращения. Это открывает перспективу применения 
разработанного в  статье метода в  анизотропных материалах. Создание новых кон-
струкционных материалов, в том числе с анизотропными символами в контактных 
задачах, приводит к необходимости применения решений с как можно большей бли-
зостью получаемых приближенных решений к точным. Например, аппроксимация 
решений сплайнами, граничными элементами, собственными функциями утрачи-
вает в приближенных решениях некоторые важные свойства контактных напряже-
ний. В  ряде случаев они не описывают концентрации контактных напряжений на 
границах штампов, особенно в угловых точках. Не всегда обнаруживаются податли-
вости среды при уменьшении размеров штампов. Особое место занимают контакт-
ные задачи в  областях, границы которых имеют угловые множества. В  работе [22] 
построено точное решение контактной задачи в четверти плоскости для изотропного 
случая. Этот подход оказался полезным для построения решения этой контактной 
задачи с трением для случая анизотропного символа. В основе исследования лежит 
метод блочного элемента в варианте применения для интегральных уравнений. Он 
позволил в  двумерном интегральном уравнении Винера–Хопфа с  анизотропным 
символом обойти и перенести их на задачи вычисления контурных интегралов, что 
уже достаточно просто реализуется численно, а что-то может изучаться асимптотиче-
ски.

2. Постановка задачи. Рассматриваются контактные задачи о действии с куло-
новским трением абсолютно жесткого штампа на многослойную среду в области 
четверти плоскости. Предполагается, что многослойная среда представляет собой 
изотропный композит, для которого построена функция Грина. С  ее помощью 
получается интегральное уравнение контактной задачи с  анизотропным симво-
лом. Методы построения функций Грина для сред разных реологий достаточно 
детально изложены в работах [12–17]. Их особенностью является сложность ядер 
интегральных уравнений контактных задач, приводящая к значительным трудно-
стям их решения. Это вызвано новым характером концентрации контактных на-
пряжений по сравнению с более простыми контактными задачами. В работах [12–
14] изучено поведение поверхностных характеристик для различных слоистых 
сред, применяемых в инженерной практике. Также развиты приближенные мето-
ды решения смешанных задач для таких материалов. В то же время, как показы-
вает практика, приближенные методы не всегда улавливают все особенности ре-
шений контактных задач. В связи с этим построение точных решений позволяет 
развивать приближенные методы таким образом, чтобы они правильно отражали 
все стороны поведения напряженно-деформированного состояния контактной 
задачи. Особенно это важно в контактных задачах, рассматриваемых в некласси-
ческих областях, когда границы штампов содержат угловые точки. С учетом ска-
занного рассматривается интегральное уравнение, свойства символа которого 

α β( , )K  свойственны контактной задаче с  кулоновским трением. Функция α β( , )K  
является аналитической функцией, обладающей определенным асимптотическим 
поведением на бесконечности и  не имеющая особых точек на каждой из веще-
ственных осей.

Рассматривается интегральное уравнение Винера–Хопфа, заданное в первом ква-
дранте [22]. Оно имеет вид рис. 1.
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Функция α β( )K , , является вещественной, порождается решением статической гра-
ничной задачи в многослойной среде, является непрерывной и без нулей на осях по 
обоим аргументам, с поведением на бесконечности вида

	 α β α α β β α β α β1 1( , ) ( ), ( , ) ( ); , const, ,K O K O- -= = = ® ¥	 (2.2)

Для интегрального уравнения (2.1) справедливы теоремы единственности [17].
Теорема 1. Пусть функции α β( , )K  знакопостоянна на вещественных осях α β, . Тогда 

интегральное уравнение (2.1) имеет единственное решение.
Принятые свойства функции α β( , )K  вкладываются в требование теоремы.
Представление решения интегрального уравнения. Исследование, выполненное в ра-

боте [22], дало возможность методом факторизации и блочного элемента построить 
точное решение интегрального уравнения (2.1), которое дается теоремой.

Теорема 2. В условиях единственности решение интегрального уравнения (2.1) для 
суммируемой в четверти плоскости и имеющей непрерывные первые производные 
функции ( , )f x y  по каждому параметру дается формулой
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Рис. 1. На рисунке изображена часть неограниченной области первого квадранта, 
занятой деформируемым штампом
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Операторы в фигурных скобках детально описаны в [14] и имеют вид
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Здесь αΠ+, αΠ- – комплексные области выше и ниже вещественной оси αo  комплекс-
ной плоскости параметра преобразования Фурье α. Аналогично βΠ+, βΠ- – комплекс-
ные области выше и ниже вещественной оси βo  комплексной плоскости параметра 
преобразования Фурье β. Контуры Γ в  приведенных формулах (2.5) расположены 
в полосах регулярности, разделяющих области αΠ+, αΠ- и  βΠ+, βΠ- и содержащих веще-
ственные оси [17]. Такие полосы всегда присутствуют в статических задачах.

Свойства решения (2.3) интегрального уравнения (2.1).
1.  Докажем, что интегральное уравнение (2.1) точно удовлетворяется функци-

ей (2.3), (2.4).
Внесем функцию ( , )q x y  в интегральное уравнение (2.1), представленное в виде
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После использования обозначений (2.1), получим представление
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Внесем в эту формулу α β( , )Q  из (2.4) и исследуем интеграл слева. В результате исклю-
чения членов, обращающих интеграл в ноль, убеждаемся, что получается соотноше-
ние
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Применение метода факторизации доказывает, что носителем решения является 
первый квадрант.

2.  Исследование концентрации контактных напряжений, даваемых полученным 
решением.
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1)  В этих решениях, представленных формулой (2.4), первый справа член форми-
рует вырожденную составляющую решения, описывающую ее в удаленной от границ 
области. Поэтому оно не содержит концентраций контактных напряжений.

2)  Второй и третий члены содержат граничные концентрации напряжений, свой-
ственные одномерным интегральным уравнениям Винера–Хопфа [17, 23].

Подобно одномерному случаю, они дают на прямолинейных границах штампа 
особенности вида 1/2x-  и  1/2y- .

Для получения этих и  последующих оценок интегралов Фурье с  малым параме-
тром x , вычисляемых от непрерывных функций со свойством 1( ) ( )S u O u-= ; 1u  , 
имеющих вид
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применяется замена параметра интегрирования 1u tx-= . Она дает оценку
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3)  Четвертый и пятый члены описывают концентрацию напряжений в окрестно-
сти угловой точки штампа. Она формируется в результате оценки интеграла
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при одновременном предельном переходе 0, 0x y® ® .
Пока получена асимптотически точная оценка двумерного интеграла с двумя два-

жды факторизованными в  виде произведения анизотропными функциями α β( , )K . 
Скорее всего, оценку интеграла предстоит выполнять численно. Однако для случая 
достаточно простой изотропной функции α β( , )K , аппроксимирующей на бесконеч-
ности некоторые общие функции, доказывается, что формула содержит наличия 
особенности более высокого порядка, чем на гладкой границе, что свойственно кон-
тактным задачам в угловой точке [17].

В качестве примера покажем правило построения первого члена подынтегральной 
функции для случая, когда простейший анизотропный символ α β( , )K , обладающий 
свойством (2.2), имеет вид

	 α β α β2 2 2 2 1/2( , ) ( ) ; , 0K B A A B-= + + > 	 (2.7)

При осуществлении факторизации по какому-нибудь параметру остальные нахо-
дятся на вещественной оси, хотя для точности также должны стремиться к бесконеч-
ности. Факторизовав функцию α β( , )K  по параметру α на верхнюю полуплоскость, 
получаем

	 α α β α β α
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Факторизацию функции α α β( , ))K+  по параметру β на верхнюю комплексную полу-

плоскость можно выполнить точно, в интегральном виде, нормализовав α α β( , ))K+  по 
β на бесконечности. Для этого рассмотрим функцию, стремящуюся к единице при 
β ® ¥. Имеем

	 αα β β α β β2 2 2 1/4( , ) ( ) ( , ) 1; , constG i B c K c+= + ® ® ¥ =
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отсюда
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Совершенно аналогично оцениваются

	 β β αα β β α β α1/2 1/2( , ) ( ), ( , ) ( )K O K O- -
+ += =

Внося эти оценки в (2.6), получим, в результате

	 3/4 2 2
0( , ) ( );q x y O r r x y-= = +

Однако эти оценки являются грубыми, поскольку в них не учитывается одновре-
менность стремления к  бесконечности параметров α β, . Тем не менее, полученный 
результат позволяет на рассмотренном примере делать сравнение с ранее исследо-
ванным изотропным случаем. Приняв в формуле (2.7) 1B = , переходим к изотроп-
ному случаю, рассмотренному в [17, 24].

На рис. 2 приводится график особенностей в вершине клина для разных его рас-
творов θ θ π2 ; 0 < < , вычисленного в [17]. На рис. 2 необходимо рассматривать слу-
чай θ π/ 0.25= . При ε 0=  трение штампа с  основанием отсутствует. Для оценки 
в [17] использованы асимптотические приближения функций Бесселя. Из него вид-
но, что полученное в  настоящей работе значение 3/4r-  концентрации контактных 
напряжений в угловой точке близко к вычисленному в [17].

Рис. 2. Поведение параметра особенности γ  в угловой точке штампа для разных коэффициентов трения ε. 
Для сравнения с результатом статьи необходимо брать ε θ π0, / 0.25= = .
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В случае анизотропии символа α β( , )K , вызванной движением штампа с кулонов-
ским трением p по поверхности основания против направления оси α, плюс, и по 
направлению оси α, минус, символ α β( , )K  на бесконечности, при α β2 2+ ® ¥, 
описывается функцией [14]

	 ν
α β α β ε α ε

ν
2 2 2 1/2 1 2( , ) ( ) 1 sgn ;

2(1 )
K A p- -é ù= + + ± =ê úë û -

Очевидно, при 0p >  он анизотропен благодаря числителю. Здесь ν –коэффициент 
Пуассона, p – коэффициент Кулоновского трения.

Выполним факторизацию символа по параметру α. Тогда имеем [14, стр. 139, 23, 
стр. 41]

	
θ θ

α α β α β α θ π ε
1/22 2 1/2 1/2 1( , ) ( ) ( ); 0, arctgK i A O A

- - -
+

é ù= + + = > =ê úë û




Применяя к этому символу факторизацию по параметру β, получаем асимптотиче-
ское поведение решения в угловой точке штампа в виде

	
θ

3 11 2 24 2
0( , ) ( );q x y O r r x y

-
= = +



Полученные результаты охватывают все кривые, представленные на рис. 2, и, как 
видно, близки к ним. В будущем предстоит окончательно выяснить, какому подходу 
принадлежит более высокая точность.

3.  Поведение решения в  зоне, удаленной от угловой точки четверти плоскости. 
При удалении от угловой точки, оставаясь вблизи одной из границ, в формуле (2.4) 
в связи с наличием экспоненциально убывающих членов в статических задачах исче-
зают вторая и четвертая или третья и пятая функции, а также половина вырожденной 
составляющей. Оставшаяся составляющаяся решения после сокращения коэффици-
ента 1 / 2 у решения и правой части представляет решение одномерного уравнения 
Винера–Хопфа, соответствующего полубесконечному штампу.

4.  Податливость разных зон штампа при внедрении в деформируемый материал. 
При рассмотрении зон вблизи угловой точки и вдали от нее обнаруживается разница 
в возникающих контактных напряжениях, необходимых для одинакового вертикаль-
ного внедрения штампа в деформируемое основание. В зоне вблизи угловой точка 
контактные напряжения на границе имеют коэффициент 1 / 2. Носитель этой зоны 
мал, и он легче внедряется в основание, как происходит и с полосовыми штампами, 
ширина которых уменьшается. При переходе в удаленную от угловой точки зону ко-
эффициент 1 2 исчезает, решение отвечает большему носителю  – полуплоскости. 
Таким образом, подтверждено у решения (2.3), (2.4) наличие отдельных, ранее выяв-
ленных свойств точного решения интегрального уравнения (2.1).

Выводы. В настоящей работе факторизационным методом построено точное ре-
шение двумерного интегрального уравнения Винера–Хопфа для контактной задачи 
с трением в четверти плоскости. Такая контактная задача сводится к двумерному ин-
тегральному уравнению свертки и просто решается применением двумерного инте-
грального преобразования Фурье. Предложенный в работе подход позволяет решать 
широкий круг контактных задач с трением для изотропных композитных материалов 
и получать доступные для дальнейшего численного анализа решения в интегральном 
виде.

В работе приведены самые общие свойства решения этого интегрального уравне-
ния, которые, несомненно, обогатятся при исследованиях конкретных задач. Реше-
ние может быть использовано как в  сейсмологии для выявления новых предвест-
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ников роста сейсмичности в горных территориях, так и в инженерной практике при 
конструировании изделий с применением конструкционных материалов.

Работа выполнена при финансовой поддержке Российского научного фонда и Ку-
банского научного фонда, региональный проект 24-11-20006.
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About the Properties of Static Contact Solutions Problems for Anisotropic Composites 
in the Quarter Plane
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In this work, for the first time, an exact solution of the static contact problem of the action 
of a rigid wedge-shaped die occupying the first quadrant on a layer of composite mate-
rial having arbitrary anisotropy is constructed using the block element method. Unlike 
numerous, mostly unsuccessful attempts to solve this and similar problems by analytical 
or numerical methods, which allowed us to identify only partial properties of the solu-
tion to this problem, the block element method made it possible to reveal a  richer set 
of properties of its solutions. The solution is obtained in both coordinate and Fourier 
transforms. This makes it especially convenient to further study it by numerical analysis 
using standard computer programs. They will allow us to identify certain properties of 
composites as structural materials dictated by different types of anisotropies. It is shown 
that the obtained solution exactly satisfies the two-dimensional Wiener–Hopf equation 
for an arbitrary right-hand side. A number of previously unknown properties of the solu-
tion have been revealed. In particular, the obtained representation of the solution of the 
contact problem in a wedge gave it a general appearance. In comparison with strip stamps, 
it contains an additively additional term describing the concentration of contact stresses 
at the angular point, that is, at the top of the stamp. The calculation of the indicator of 
the peculiarity of the concentration of contact stresses at this point is close to the values 
performed by numerical methods in a number of works. The paper shows that the zone 
near the top of the stamp has superior malleability when the stamp is inserted into the 
medium, compared with remote zones. This corresponds to the estimates obtained by 
the example of the introduction of strip stamps narrowing in width into the layer. In the 
zone considered away from the top of the stamp, the exact solution turns into a solution 
for the case of a semi-infinite stamp. The developed method is applicable to composites of 
arbitrary anisotropies arising in linearly elastic materials and crystals of any cross-sections 
that allow the construction of the Green function, and hence the two-dimensional Wie-
ner–Hopf integral equations. The establishment of a general type of solution to the con-
sidered contact problem opens up the possibility of studying the precursors of increased 
seismicity in mountainous areas, as well as improving numerical methods to obtain more 
accurate solutions to complicated contact problems in engineering practice.

Keywords: contact problems, anisotropy, composite, Wiener–Hopf integral equation, 
wedge-shaped domain, block element, factorization
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