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1. Введение. Как известно, метод конформных отображений широко применя-
ется при исследовании потенциальных течений идеальной жидкости [1–5]. Это 
обусловлено инвариантностью уравнения Лапласа при конформных отображениях 
и  удобствами, связанными с  переходом к  простым геометрическим формам, для 
которых существуют аналитические решения через функции Грина или в виде раз-
ложений в  ряды. Кроме того, в  случае простых геометрических форм задача по-
строения сеток упрощается.

В [6] конформное отображение использовано для моделирования стационарного 
плоскопараллельного течения вязкой несжимаемой жидкости вокруг цилиндра про-
извольного сечения. При этом выведено соответствующее преобразование стацио-
нарных уравнений Навье–Стокса в переменных функция тока – завихренность.

В работе [7] конформное отображение было применено для обобщения ранее 
разработанного в  [8] эффективного алгоритма расчета нестационарного обтекания 
кругового цилиндра на случай цилиндрических тел произвольного сечения. При 
этом течение моделировалось бессеточным лагранжевым методом Вязких Вихревых 
Доменов. Переход в  область конформного отображения осуществлялся на каждом 
шаге только для вычисления циркуляций вихревых частиц, образующихся на теку-
щем шаге, тогда как перемещение частиц совершалось в соответствии с уравнениями 
Навье–Стокса в обычной плоскости. В работе [9] получено преобразование неста-
ционарных уравнений Навье–Стокса вязкой несжимаемой жидкости при конформ-
ном отображении. Это позволило усовершенствовать метод, предложенный в  [7], 
и осуществлять перемещение частиц, не возвращаясь в физическую плоскость. Раз-
работанный метод позволил многократно сократить время расчета с высоким разре-
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шением пограничного слоя и воспроизвести кризис сопротивления эллиптического 
цилиндра.

Интересно, что преобразованное уравнение Навье–Стокса несжимаемой жидко-
сти по форме незначительно отличается от обычного.

Обычное уравнение:

	 ν
ρ
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Преобразованное уравнение:
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æ ö¢ ¢¶ ÷ç ÷¢ ¢ ¢ ¢ ¢ç- ´ + Ñ ´ = -Ñ + ÷ç ÷÷ç¶ è ø
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Отличие состоит только в том, что в преобразованном уравнении в трех местах при-
сутствует множитель J – Якобиан преобразования.

В данной работе впервые выведено преобразование нестационарных уравнений 
Навье–Стокса, включая уравнение неразрывности и баланса тепла, вязкой сжимае-
мой среды. Сложность этой задачи заключается в том, что ни комплексного потен-
циала, ни функции тока в данном случае не существует. Поэтому обычные методы 
теории функций комплексной переменной не применялись. Использовались методы 
векторного анализа.

2. Свойства вихревых несоленоидальных полей при конформном отображении
Рассмотрим конформное отображение области S, ограниченной кривой C, в об-

ласть S′ с границей C′: ¢ ¢= ( )x x x .

Пусть точка 
æ ö÷ç ÷= ç ÷ç ÷÷çè ø
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где J − матрица Якоби. Известно, что при конформном преобразовании справедливы 
условия Коши–Римана [1]
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откуда следует, что матрица Якоби конформного преобразования представляет со-
бой матрицу поворота O, умноженную на положительный коэффициент, равный 
квадратному корню из якобиана J, т.е.
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Пусть в области S задано поле скорости u, ротор и дивергенция которого не равны 
нулю. Обычно конформные преобразования применяют в  случае потенциальных 
соленоидальных полей, для которых существует комплексный потенциал ς ϕ ψ= + i . 
Из равенства потенциалов в точках физической и отображенной областей и опреде-
ления скорости как ϕ ϕ= Ñ = Ñ( ), ' ' ( '( ))u x u x x  следует
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	 (2.3)

В случае, когда ротор и дивергенция поля скорости не равны нулю, комплексный 
потенциал не существует. В этом случае мы используем равенство (2.3) как определе-
ние скорости 'u  в отображенной области.

Покажем, что циркуляция скорости 'u  по произвольной кривой в S′ равна цирку-
ляции скорости u по соответствующей кривой в S. Используя (2.1) и (2.3), запишем:
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Поскольку скалярное произведение инвариантно относительно поворота 
( ) ( )× × × = ×d dO u O x u x, получаем
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Рассмотрим бесконечно малую область ∆ ′s , ограниченную контуром ¢c . Согласно 
теореме Стокса циркуляция скорости по этому контуру равна интегралу 
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D

× = = Dò ò

c s

d ds su x . Из равенства (2.4) и  отношения площадей s s J¢D D =  

вытекает соотношение

	 ¢ ¢Ñ´ = Ñ ´Ju u 	 (2.5)

Докажем равенство расходов жидкости по соответствующим криволинейным от-
резкам в физической и отображенной областях
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где n – нормаль к кривой = ´zdl dn e x. Используя (2.1) и (2.3), запишем:
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Очевидно, что векторное произведение ( ) ( )× ´ ×dO x O u  равно ´dx u, так как век-
торы dx и u повернуты в плоскости на один и тот же угол, откуда следует (2.6). При-
меняя формулу Стокса к  интегралам (2.6), взятым по замкнутым контурам вокруг 
бесконечно малых площадок, получим

	 ¢ ¢Ñ × = Ñ ×Ju u 	 (2.7)

Равенство (2.7) также справедливо для любого вектора w, если -= ×1 'Jw O w :

	 ( ) ( )1 1J J J- -¢ ¢ ¢ ¢Ñ × = Ñ × = Ñ ×w O O w w 	 (2.8)

3. Преобразование Уравнений Навье–Стокса при конформном отображении
Пусть в плоской области S, ограниченной кривой С, имеется нестационарное те-

чение вязкой сжимаемой жидкости, удовлетворяющее уравнениям Навье–Стокса
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	 (3.1)

где ρ,p  – давление и плотность жидкости соответственно, µ, ζ − коэффициенты вяз-
кости.

Будем полагать, что в области конфрормного отображения S′, ограниченной кри-
вой C′, функции ρ,p , µ, ζ равны аналогичным функциям в соответствующих точках 
области S, а скорость 'u  определена формулой (2.3).

При конформном отображении полная производная скорости с  учетом форму-
лы (2.5) преобразуется следующим образом:
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	 (3.2)

где -= 1ˆ JA O .
Последнее слагаемое в правой части равно ( )( )¢ ¢ ¢× ´ Ñ ´ˆ JA u u , так как для любого 

вектора A в плоскости XY поворот его на любой угол в этой плоскости приводит к по-
вороту векторного произведения ´ za e  на тот же угол, т.е. ( ) ( )- -× ´ = × ´1 1

z zO a e O a e . 
В результате, выражение (3.2) можно переписать в виде

	 ( ) ( )
æ ö æ ö¢ ¢ ¢ ¢¶ ¶÷ ÷ç ç÷ ÷¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ç ç= × + Ñ - ´ Ñ ´ = × + × Ñ + Ñ÷ ÷ç ç÷ ÷÷ ÷ç ç¶ ¶è ø è ø

2 2
ˆ ˆ

2 2
d Ju uJ J J
dt t t
u u u

A u u A u u 	(3.3)

Градиент давления при переходе в область S′ имеет вид

	 ¢Ñ = × Ñˆp pA 	 (3.4)

Если сила F является потенциальной = ÑHF , то

	 ¢= × Ñ = ×ˆ ˆ'HF A A F 	 (3.5)

В противном случае будем считать, что 1ˆ -¢ = ×F A F по определению.
Рассмотрим преобразование выражения ( )µÑ × 2 S :
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Первое слагаемое в правой части (3.6) запишем в векторном виде и используем фор-
мулу двойного векторного произведения

	 ( ) ( ) ( ) ( )µ µ µ µ µ
æ ö¶ ¶¶ ÷ç ÷ç + = Ñ ×Ñ + Ñ Ñ × = - Ñ´ Ñ´ + Ñ Ñ ×÷ç ÷÷ç¶ ¶ ¶è ø
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Используя при переходе в область конформного отображения равенства (2.5) и (2.7), 
получим

	 ( ) ( )( )µ µ
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Выражение в скобке в правой части (3.8) представим в виде суммы двух векторных 
функций, одна из которых линейно зависит от J, а вторая от ∇J.
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По аналогии с (3.6) и (3.7) получим

	 µ µ
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Вектор (2)V  можно записать в виде
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Второе слагаемое в правой части (3.6) преобразуется следующим образом:
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Введем обозначение µ= Ñg  и используем формулу ротора векторного произведения 
( ) ( ) ( ) ( ) ( )Ñ´ ´ = ×Ñ + Ñ × - × Ñ - Ñ ×u g g u u g u g g u  получим
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Так же, как и в предыдущем случае, представим выражение в скобке в правой части 
в виде суммы двух слагаемых
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Подставляя (3.9) и (3.14) в (3.6), получим

	 ( ) ( )µÑ × = × + + +

(1) (2) (3) (4)ˆ2 S A V V V V 	 (3.15)

Из (3.10), (3.11) и (3.14) следует
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V V

¢¶¶
¢ ¢¶ ¶

l

i l

uJ
x x

	 (3.16)

Последнее слагаемое в правой части (3.1) запишем в виде

	 ( )

µ ς µ ς

µ ς µ ς

µ ς

æ öæ öæ ö æ ö¶¶ ÷÷ çç ÷ ÷ç ç ÷÷÷ ÷ç-Ñ × - Ñ × = - - =çç ç ÷÷÷ ÷ççç ç ÷÷÷ ÷ç ç÷ ÷ç ç¶ ¶è ø è øè ø è ø
æ ö æ öæ ö æ ö÷ ÷ç ÷ ç ÷ç ç÷ ÷¢ ¢ ¢÷ ÷= -Ñ - Ñ × = - × Ñ - Ñ × =ç çç ç÷ ÷÷ ÷ç çç ç÷ ÷÷ ÷ç ç÷ ÷ç çè ø è øè ø è ø

= × +

æ ö÷ç¢ ¢÷= - Ñ -ç ÷ç ÷çè ø

(5) (6)

(5)

2 2
3 3

2 2ˆ
3 3

ˆ

2
3

l

i l

u
x x

J

J

u E

u A u

A V V

V

( ) µ ς

æ ö÷ç ÷¢Ñ ×ç ÷ç ÷÷çè ø
æ ö÷ç¢ ¢ ¢÷= - Ñ - Ñ ×ç ÷ç ÷çè ø

(6) 2
3

J

u

V u

	 (3.17)

Подставляя выражения (3.3)–(3.5), (3.16), (3.17) в  уравнение Навье–Стокса (3.1) 
и вынося за скобки оператор Â, получаем

	 ( )ρ
=

æ öæ ö¢ ¢¶ ÷÷ çç ÷÷¢ ¢ ¢ ¢ ¢ ¢çç× + × Ñ + Ñ = × -Ñ + + ÷÷ çç ÷÷÷ ÷ç ç¶è ø è ø
å

2 6
( )

1

ˆ ˆ
2

j

j

uJ J p
t

u
A u u A F V

Если матрица Â является невырожденной, т.е. ¹ 0J  (отметим, что при отображении 
профиля в круг Якобиан в угловой точке обращается в бесконечность), то умножая 
обе части уравнения на обратную ей матрицу -1Â , а также используя выражения (3.16) 
и (3.17) для функций ( )jV , получим преобразованное уравнение Навье–Стокса, спра-
ведливое в области S′.
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( ) ( )

( ) ( )( ) ( ) ( )

( )
( )

ρ µ µ ς

µ µ µ ς

µ
ξ ξ δ δ µ

æ öæ ö æ öæ ö¢ ¢¶ ÷÷ ç ÷ç ç ÷ç ÷÷ ÷¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ç ÷ç + × Ñ + Ñ = -Ñ + + Ñ × -Ñ - Ñ × +çç ÷÷ ÷÷çç çç ÷÷ ÷÷ç ÷÷ çç ç ÷¶ è øè øè ø è ø
æ öæ ö ÷ç ÷ç ÷¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢÷= - Ñ ´ Ñ ´ + Ñ Ñ × + + Ñ × =ç ç ÷÷ç ç ÷÷ç ÷ç è øè ø

¢¶¶
= + +

¢ ¢¶ ¶



2 2' 2
2 3

1
3

1
3

l
ik lm ik lm

k m

uJ J p J
t

J J

uJ
x x

u
u u F S u D

D u u u

ς
æ ö ¢¶¶÷ç ÷+ç ÷ç ÷ç ¢ ¢¶ ¶è ø

l

i l

uJ
x x

4. Преобразование уравнений неразрывности и баланса тепла
Из (2.8) следует, что ( ) ( )ρ ρ¢ ¢Ñ × = Ñ ×Ju u . Следовательно, уравнение неразрывно-

сти в отображенной области имеет вид

	 ( )ρ
ρ

¶ ¢ ¢= - Ñ ×
¶

J
t

u

Уравнение баланса тепла запишем в виде [10]

	
( ) ( )

ρ ρ

µ
ρ µ µ µ ς

σ

æ ö æ ö¶ ÷ ÷ç ç÷ ÷ç ç+ + × Ñ + =÷ ÷ç ç÷ ÷÷ ÷ç ç¶ è ø è ø
æ öæ ö¶ ÷ç ÷ç ÷÷= × + + Ñ × Ñ - ´ Ñ´ - - Ñ × + Ñç ç ÷÷ç ç ÷÷ç ÷ç¶ è øè ø

2 2

2

2 2
2 ,
3

u uh h
t

p u h
t

u

F u u u u u

	 (4.1)

где h – энтальпия.
Выражение в  левой части уравнения преобразуем с  учетом равенства 

( ) ( )¢ ¢ ¢ ¢× Ñ = × × × Ñ = × Ñˆ ˆ Ju A u A u . Получим

	
ρ ρ

ρ ρ

æ ö æ ö¶ ÷ ÷ç ç÷ ÷ç ç+ + × Ñ + =÷ ÷ç ç÷ ÷÷ ÷ç ç¶ è ø è ø
æ ö æ ö¢ ¢¶ ÷ ÷ç ç÷ ÷¢ ¢ç ç= + + ×Ñ +÷ ÷ç ç÷ ÷÷ ÷ç ç¶ è ø è ø

2 2

2 2

2 2

2 2

u uh h
t

u uh J J h J
t

u

u

	 (4.2)

Скалярное произведение ( ) ( )¢ ¢ ¢ ¢× = × × × = ×ˆ ˆ JF u A F A u F u
Выражение в правой части (4.1)

	
( ) ( )

( ) ( ) ( )

µ
µ µ µ ς

σ

µ
µ µ µ ς

σ

æ öæ ö ÷ç ÷ç ÷÷Ñ × Ñ - ´ Ñ´ - - Ñ × + Ñ =ç ç ÷÷ç ç ÷÷ç ÷ç è øè ø
æ öæ ö ÷ç ÷ç ÷¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢÷= Ñ × Ñ - ´ Ñ ´ - - Ñ × + Ñç ç ÷÷ç ç ÷÷ç ÷ç è øè ø

2

2

2
3

2
3

u h

J Ju J J h

u u u u

u u u u
	 (4.3)

Здесь использованы равенства (2.5), (2.7) и (2.8)
В результате, подставляя выражения (4.2) и (4.3) в (4.1), получаем уравнение ба-

ланса тепла в области конформного отображения, которое отличается от исходного 
только наличием множителя J в некоторых слагаемых.

	
( ) ( ) ( )

ρ ρ

µ
ρ µ µ µ ς

σ

æ ö æ ö¢ ¢¶ ÷ ÷ç ç÷ ÷¢ ¢ç ç+ + × Ñ + =÷ ÷ç ç÷ ÷÷ ÷ç ç¶ è ø è ø
æ öæ ö¶ ÷ç ÷ç ÷¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢÷= × + + Ñ × Ñ - ´ Ñ ´ - - Ñ × + Ñç ç ÷÷ç ç ÷÷ç ÷ç¶ è øè ø

2 2

2

2 2
2
3

u uh J J h J
t

pJ J Ju J J h
t

u

F u u u u u
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5. Граничные условия
Условию прилипания на неподвижном теле соответствуют условия

	
( ) ( )

¢

¢

¢= Þ =

¢ ¢× Ñ = Þ ×Ñ =

0 0

0 0
C C

C C
p p

u u

n n

В общем случае, если заданы тангенциальная ut и нормальная un скорости

	 ¢

¢

¢ ¢× = Þ × =

¢ ¢× = Þ × =

l t l tC C

n nC C

u J u

u J u

u e u e

u n u n

Условия на бесконечности определяются равенством ¥ ¥
¢= ×ˆu A u .

Заключение
Выведены преобразованные уравнения Навье–Стокса, неразрывности и баланса 

тепла, справедливые при произвольном невырожденном конформном отображении. 
Решая эти уравнения в отображенной области, можно получить поля давления, плот-
ности и температуры, которые равны давлению, плотности и температуре в соответ-
ствующих точках физической области. Легко показать, что линии тока в физической 
плоскости при конформном отображении переходят в линии тока в отображенной 
плоскости. В самом деле, если линия тока описывается функцией τ( )x , где τ – пара-
метр, то τ

τ
´ =

( ) 0d
d
x

u , и в отображенной области будет справедливо аналогичное ра-

венство τ
τ
¢

¢´ =
( ) 0d

d
x

u , т.к. τ τ
τ τ
¢

= ×
( ) ( )d dJ

d d
x x

O , ¢ = ×
1
J

u O u, т.е. оба вектора пово-

рачиваются на один и тот же угол.
Полученные преобразованные уравнения отличаются от исходных только нали-

чием зависимости от Якобиана преобразования. При решении этих уравнений сеточ-
ными методами значение Якобиана может быть предварительно вычислено на сетке 
и использовано на каждом шаге.
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It is shown that, the circulation of velocity and fluid flow on any closed or open con-
tour are preserved under an arbitrary conformal mapping of the two-dimensional viscous 
compressible flow region. The transformed unsteady Navier–Stokes, continuity and heat 
balance equations, which govern the aerodynamic parameters in the mapped region, are 
derived.
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