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1. Введение. Задача о  гироскопической стабилизации неустойчивого положения 
равновесия механической системы с потенциальными силами является давно извест-
ной классической проблемой, представляющей как теоретический, так и приклад-
ной интерес. Теоретический интерес стимулируется тем фактом, что рассматривае-
мая система является консервативной и устойчивость равновесия при нелинейных 
потенциальных силах может быть достигнута только в заведомо критическом по Ля-
пунову случае, когда все корни характеристического уравнения системы линейного 
приближения лежат на мнимой оси. Это затрудняет анализ устойчивости и требует 
развития и применения специальных методов и подходов, учитывающих существен-
ную нелинейность задачи. Прикладной интерес стимулируется тем, что управляю-
щие гироскопические силы не совершают работы, поэтому стабилизация такими 
управлениями наиболее экономична по затратам энергии.

Для случая линейных систем условия, при которых гироскопическая стабилиза-
ция возможна, определяются теоремой Кельвина–Четаева [1]. Обзор наиболее из-
ученного линейного случая с отрицательно определенной матрицей потенциальных 
сил приведен в [2]. Обычно рассматривают случай, когда гироскопические силы со-
держат большой параметр, достаточные условия гироскопической стабилизации для 
такого случая приведены в  [1]. Интерес представляет получение оценок большого 
параметра снизу, гарантирующих гироскопическую стабилизацию [3].

Для существенно нелинейных потенциальных систем запрет на гироскопическую 
стабилизацию, формулируемый в терминах степени первой формы в разложении по-
тенциала в ряд, был получен в [4]. Обобщение теоремы Кельвина на случай нелиней-
ных потенциальных систем было дано в [5] на основе применения топологических 
методов, и нарушение условий этой теоремы В.В. Козлова о неустойчивости необ-
ходимо для возможности гироскопической стабилизации. Однако невыполнение 
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условий упомянутой теоремы само по себе еще не гарантирует возможность гиро-
скопической стабилизации.

Основная цель данной статьи заключается в получении достаточных условий ги-
роскопической стабилизации для одного класса нелинейных потенциальных систем 
с  потенциалом и  кинетической энергией специального вида. Указывается способ 
выбора управляющих гироскопических сил и  даются оценки больших параметров 
снизу. Результаты иллюстрируются примерами.

2. Случай линейной системы. Рассмотрим сначала уравнения движения механиче-
ской системы с линейными потенциальными и гироскопическими силами, полагая, 
что матрица кинетической энергии приведена к единичной
	  0q hGq Cq+ + = ,	 (2.1)
где q, q RnÎ   – векторы обобщенных координат и  скоростей четной размерности 

2n m= ,  TC C=  – симметрическая матрица потенциальных сил, TG G= -  – косо-
симметрическая матрица гироскопических сил, 0h >   – большой положительный 
параметр. Здесь и далее верхний индекс T  означает транспонирование. Возможность 
гироскопической стабилизации и  условия на выбор матрицы G  гироскопических 
сил, гарантирующих устойчивость положения равновесия системы (2.1), даются сле-
дующим утверждением.

Теорема 1. Пусть все собственные значения матрицы C кратные четной кратности, 
тогда существует невырожденная кососимметрическая матрица G, такая, что матри-
ца TG C  будет кососимметрической, и при использовании этой матрицы G гироско-
пических сил при всех значениях параметра
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положение равновесия  0q q= =  системы (2.1) будет устойчиво по Ляпунову.
Здесь и  далее ( )λ j M  означают собственные числа соответствующей матрицы M, 

а  ( )λmin M  и  ( )λmax M  – наименьшее и наибольшее собственные числа симметричной 
матрицы. Предполагается, что ( )λmin 0C £ , поскольку если ( )λmin 0C > , то положение 
равновесия устойчиво и без гироскопических сил.

Доказательство. Симметричная вещественная матрица C  потенциальных сил име-
ет четную размерность n m= 2  и приводится линейной заменой q Sy=  с ортогональ-
ной матрицей S  к диагональному виду [6, стр. 279], который с учетом четной крат-
ности собственных значений можно представить так
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Выберем невырожденную матрицу гироскопических сил следующим образом:
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где все gk ¹ 0.

Тогда произведение матриц G CT  будет кососимметрично

	 G C S
g

g
k m S S ST k

k

T T=
−










= …











diag

0
0

1, , , Λ ==

	 =
−










= …











S

g
g

k m Sk k

k k

Tdiag
0

0
1

λ
λ

, , ,�



9КОСОВ

Система (2.1) имеет интеграл энергии  1
T TJ q q q Cq= +  и, как легко проверить, при 

условиях теоремы 1 имеется еще один интеграл 2 2T T T TJ hq G Gq q G q= + . Для связки 
интегралов справедлива оценка снизу

	  J J q C q h G G q G G q qT T
1 2

2 2 2
2+ ≥ + ( ) + ( ) − ( )� � �� � � min min max

Здесь и далее через ×  обозначается евклидова норма вектора. Чтобы квадратичная 
форма от двух переменных q  и  q  была положительно определенной, положитель-
ный параметр µ 0>  должен быть выбран так, чтобы выполнялось условие критерия 
Сильвестра ( ) ( ) ( )λ µλ µ λ2 2

min min max 0T TC h G G G G+ - > . Для этого параметр следует 
брать между корнями квадратного трехчлена по µ, что всегда можно сделать, по-
скольку дискриминант ( ) ( ) ( )λ λ λ2 2

min min max4 0T Th G G C G G+ >  положителен при вы-
полнении неравенства 2 2

0h h> , указанного в  условиях теоремы 1. Существование 
положительно определенной функции Ляпунова в  виде связки интегралов влечет 
устойчивость положения равновесия. Тем самым теорема доказана.

Пример 1. Гироскопическая стабилизация в случае вырожденной матрицы потен-
циальных сил. Пусть в системе (2.1) матрица потенциальных сил следующая:

	 ( )λ1 1

3/2 0 0 3/2
0 3/2 3/2 0

, 3, 3,0,0
0 3/2 3/2 0

3/2 0 0 3/2

C C C

æ ö- ÷ç ÷ç ÷ç ÷- -ç ÷ç é ù÷= = = - -ç ÷ ê úë û÷ç - - ÷ç ÷ç ÷ç ÷ç ÷ç -è ø

Для матрицы гироскопических сил

	 ( )λ1 1 1

0 1/2 3/2 0
1/2 0 0 3/2

, 1,1,4,4
3/2 0 0 1/2
0 3/2 1/2 0

TG G G G

æ ö÷ç ÷ç ÷ç ÷-ç ÷ç é ù÷= = =ç ÷ ê úë û÷ç- ÷ç ÷ç ÷ç ÷ç ÷ç - -è ø

,

произведение матриц кососимметрично:

	 1 1

0 3 3 0
3 0 0 3
3 0 0 3

0 3 3 0

TG C

æ ö÷ç ÷ç ÷ç ÷-ç ÷ç ÷= ç ÷÷ç- ÷ç ÷ç ÷ç ÷ç ÷ç - -è ø

Теорема 1 гарантирует устойчивость при 2 2
0 48h h> = , на самом деле устойчивость 

будет уже при 2 2
* 3h h> = .

Отметим, что теорема о  достаточных условиях гироскопической стабилизации 
[1, cтр. 190] в этом примере неприменима из-за вырожденности матрицы 1C .

Пример 2. Гироскопическая стабилизация в случае кратных корней прецессион-
ной системы. Пусть в системе (2.1) матрица потенциальных сил следующая:

	 ( )  λ2 2

1/2 0 0 3/2
0 1/2 3/2 0

, 1, 1,2,2
0 3/2 1/2 0
3/2 0 0 1/2

C C C

æ ö- ÷ç ÷ç ÷ç ÷ç ÷ç é ù÷= = = - -ç ÷ ê úë û÷ç ÷ç ÷ç ÷ç ÷ç ÷ç-è ø
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Для матрицы 1G  из примера 1 произведение матриц кососимметрично:

	 1 2

0 5/2 3/2 0
5/2 0 0 3/2
3/2 0 0 5/2

0 3/2 5/2 0

TG C

æ ö- - ÷ç ÷ç ÷ç ÷-ç ÷ç ÷= ç ÷÷ç - ÷ç ÷ç ÷ç ÷ç ÷çè ø
Теорема 1 гарантирует устойчивость при 2 2

0 16h h> = , на самом деле устойчивость 
будет уже при 2 2

* 4h h> = .
Теорема Д.Р. Меркина [1, cтр. 190] в этом примере неприменима из-за наличия 

кратных корней характеристического уравнения прецессионной системы 
( ) ( )λ λ

22 2
1 2det 4 1 0hG C h+ = + = .

Пример 3. Этот пример показывает, что если у матрицы потенциальных сил C  име-
ются собственные значения нечетной кратности, то кососимметрическая матрица G , 
для которой произведение TG C  кососимметрично, также может существовать. Одна-
ко в  таком случае нельзя гарантировать, что det 0G ¹ , поэтому связка интегралов, 
указанная в доказательстве теоремы 1, уже не будет положительно определенной.

Матрица

	 3

1 0 6 3 3
0 8 0 0
6 0 4 2 3

3 3 0 2 3 5

C

æ ö- - ÷ç ÷ç ÷ç ÷ç ÷-ç ÷ç ÷= ÷ç ÷ç - - ÷ç ÷ç ÷ç ÷ç ÷÷ç- -è ø
имеет собственные значения нечетной кратности ( )λ 3 8, 8, 8, 8C é ù= - - -ê úë û. Для кососим-
метрической матрицы

	

( )
( ) ( )

( )

2

0 3 2 1 8 3 2 16 6 8

3 2 1 8 0 3/4 3 2 1 8

3 2 16 3 4 0 3 6 16

6 8 3 2 1 8 3 6 16 0

TG

æ ö÷- -ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷- - - + ÷ç ÷ç= ÷ç ÷ç ÷ç ÷-ç ÷ç ÷ç ÷÷ç ÷- + -ç ÷çè ø
получаем кососимметричное произведение

	

( )
( )

2 3

0 2 1 3 3 2 2 6

2 1 3 0 2 3 3 2 1

3 2 2 2 3 0 3 6 2
6 3 2 1 3 6 2 0

TG C

æ ö÷- - -ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷- - + ÷ç ÷= ç ÷ç ÷ç ÷ç ÷- -ç ÷ç ÷ç ÷÷ç ÷ç - -è ø
В данном случае  2det 0G = , и теорема 1 не работает. Характеристическое уравне-

ние системы (2.1) с  матрицами из данного примера приводится к  виду 
( ) ( )( ) ( )( )λ λ λ λ λ λ2 2 2 4 2 2

2 3det 8 8 16 64 0E hG C h+ + = - + + - + =  и  имеет положи-
тельный корень λ 2 2= , поэтому при всех значениях параметра  hсостояние равно-
весия неустойчиво. Более того, так как степень неустойчивости в данном примере 
нечетная, то по теореме Кельвина гироскопическая стабилизация невозможна ни 
при каком выборе матрицы гироскопических сил.
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Пример 4. Обратная задача гироскопической стабилизации. Пусть в системе (2.1) 
задана невырожденная матрица гироскопических сил G , и требуется определить мно-
жество матриц потенциальных сил C , для которых положение равновесия  0q q= =  
будет устойчиво при достаточно большом значении параметра 0h > . Из теоремы 1 
следует справедливость следующего утверждения.

Следствие 1. Для любой невырожденной матрицы G  положение равновесия 
 0q q= =  любой системы из семейства

	 ( )α α α α 

2 4 2
0 2 4 2 0n

nq hGq E G G G q-
-+ + + + +¼+ = ,	 (2.2)

где α α0 2, , n-¼  – произвольные вещественные числа, устойчиво при всех достаточно 
больших значениях параметра 0h > .

Отметим, что в (2.2) в скобках стоит симметричная матрица при любых значениях 
коэффициентов α α0 2, , n-¼ . Рассмотрим частный случай системы (2.2), когда α2 1= , 
все остальные коэффициенты равны нулю, и матрица G  вырождена (это заведомо так 
при нечетном n). Этот случай интересен тем, что для системы  

2 0q hGq G q+ + =  ги-
роскопическая стабилизация обеспечивается только относительно части перемен-
ных. Для этой системы, как следует из доказательства теоремы 1, первым интегралом 
будет функция

	   

2 2T T T T T TV q q q G q hq G Gq q G q= + + + = 
	 ( ) ( ) ( )  2

T T Tq Gq q Gq h q G Gq= + + + -

Эта функция при 2h >  является положительно определенной по переменным 
1y q Gq= +  и  2y Gq= , поэтому, на основании теоремы В.В. Румянцева об устойчиво-

сти относительно части переменных [7, стр. 29], положение равновесия устойчиво 
относительно 1 2,y y , а  значит, и  относительно их разности 1 2y y q- = , т.е. относи-
тельно скоростей. Устойчивость по отношению ко всем координатам при этом не 
гарантирована.

3. Случай нелинейной системы. Рассмотрим теперь механическую систему с потен-
циальными и гироскопическими силами, описываемую уравнениями Лагранжа:

	
( )





0k k k k k
k k k

f qd T T h G q C q
dt q q q

¶¶ ¶
- + + + =

¶ ¶ ¶
; 1,k m= 	 (3.1)

Здесь 0kh >   – положительные параметры; kn
kq RÎ , ( )1 2, ,

TT T T n
mq q q q R= ¼ Î , 

1 2 mn n n n= + +¼+  – отдельные выделенные векторные компоненты и полный век-
тор обобщенных координат системы; кинетическая энергия имеет вид

	 T T q q s s q
k

m

k m m k
= ( ) = … …( )

=
∑, , , , , , 

1
2 1

1 1
2

� � � 	 (3.2)

	 s qk k
=

2
, σ T

k k k kq C q= ; 1,k m= ,

а все функции ( )ϕ σ σ1 1, , , , ,k m ms s¼ ¼  ограниченные строго положительные 
( )ϕ ϕ σ σ ϕ1 1, , , , , 0k k m m ks s³ ¼ ¼ ³ >  и непрерывно дифференцируемые; потенциаль-

ная энергия имеет вид

	 ( ) ( )1 1
1

1 , , , , ,
2

m
T
k k k m m

k

q q C q f s sΠ σ σ
=

= + ¼ ¼å ,	 (3.3)
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где kC   – постоянные симметричные квадратные матрицы размера k kn n´  с  веще-
ственными элементами, а  ( )σ σ1 1, , , , ,m mf s s¼ ¼  – некоторая непрерывно дифференци-
руемая функция своих аргументов, производные которой обращаются в  нули при 
обращении всех аргументов в ноль. Если среди матриц kC  имеется хотя бы одна, кото-
рая имеет хотя бы одно отрицательное собственное значение, то при отсутствии ги-
роскопических сил (т.е. когда все матрицы kG  нулевые) положение равновесия 

 0q q= =  будет неустойчиво.
Задача гироскопической стабилизации для нелинейной системы (3.1) состоит 

в том, что постоянные кососимметрические матрицы kG  должны быть выбраны так, 
чтобы гарантировать устойчивость положения равновесия  0q q= = . Отметим, что 
несмотря на то, что в уравнениях (3.1) выделены в явном виде блочно-диагональные 
матрицы линейных потенциальных и гироскопических сил, система уравнений (3.1) 
является взаимосвязанной. Связи между подсистемами обусловлены тем, что функ-
ции ( )ϕ σ σ1 1, , , , ,k m ms s¼ ¼  и  ( )σ σ1 1, , , , ,m mf s s¼ ¼  зависят в общем случае от всех обоб-
щенных координат.

Теорема 2. Пусть все размерности kn   – четные, кинетическая и  потенциальная 
энергия имеют соответственно вид (3.2) и (3.3), причем все матрицы kC  имеют только 
кратные собственные значения четной кратности.

Тогда существуют кососимметрические невырожденные матрицы kG , такие, что 
произведения T

k kG C  будут кососимметрическими матрицами, и  при использовании 
таких матриц kG  в качестве матриц гироскопических сил в (3.1) положение равнове-
сия  0q q= =  будет устойчиво по Ляпунову при

	
( )
( )

( ){ }
λ

λ
ϕλ

ϕmax2 2
0 min2

min

2

4 min 0,
T

k k
k k k

k
T

kk k

G G
h h C

G G
> = - ; 1,k m=

Доказательство. Как следует из доказательства теоремы 1, существуют кососимме-
трические невырожденные матрицы kG , такие, что произведения T

k kG C  будут косо-
симметрическими матрицами. Замкнутая система (3.1), (3.2), (3.3) при условиях тео-
ремы имеет первые интегралы:

	 ( ) ( )Π0 ,J T q q q= +  – интеграл энергии

	


2T T T T
k k k k k k k k

k

TJ h q G G q q G
q

¶
= +

¶
; 0,kh >  1,k m=

Действительно, вычисляя производную функции kJ  в силу системы (3.1), получаем

	 

 J h q G G q q q G
s

q C qk k k
T

k
T

k k k k
T

k
T k

k
k

k

k
k k= −

∂

∂
+
∂

∂









2 2 2

2 � �
�


− 

	
σ

2 2 2 2 0T T T T
k k k k k k k k k k k k

k k

f fh q G G q q G C q q C q
s

æ ö¶ ¶ ÷ç ÷ç- - + + º÷ç ÷÷ç ¶ ¶è ø
Будем рассматривать в качестве функции Ляпунова связку интегралов

	 µ0
1

2
m

k k
k

V J J
=

= +å ;  µ 0, 1,k k m> = 	 (3.4)

В малой окрестности положения равновесия 0q =  потенциальная энергия пред-

ставима в  виде Π q q C q o q
k

m

k
T

k k( ) = + ( )
=
∑

1
2 1

2
, поэтому для связки интегралов (3.4) 

справедлива оценка снизу
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	 V q C q h G G q
k

m

k k k k k k k
T

k k
≥ + ( ) + ( )( −

=
∑

1

2 2 2
� � � � min min  

	 − ( ) ) + ( )2 1 2 2
� ��k k k

T
k k kk G G q q o qmax

/


Рассмотрим k-ую компоненту квадратичной части оценки снизу для функции Ля-
пунова:

	 V q C q h G G qk k k k k k k k
T

k k2
2 2 2

= + ( ) + ( ) −� � � � min min �

	 − ( )2 1 2� ��k k
T

k k kk G G q qmax
/



Чтобы квадратичная форма 2kV  от двух переменных q
k
 и  q

k
 была положительно 

определенной, положительный параметр µ 0k >  должен быть выбран так, чтобы вы-
полнялось условие критерия Сильвестра

	 ( ) ( )( ) ( )ϕ λ µ λ µ ϕ λ2 2
min min max 0T T

k k k k k k k k k kC h G G G G+ - >

Для этого параметр µk следует брать между корнями квадратного трехчлена по µk, 
что всегда можно сделать, поскольку дискриминант

	 ( ) ( ) ( )ϕ λ ϕ ϕ λ λ2 2 2 2
min min max4 0T T

k k k k k k k k k kD h G G C G G= + >

положителен при выполнении неравенства 2 2
0k kh h> , указанного в  условиях теоре-

мы 2. Существование положительно определенной функции Ляпунова в виде связки 
интегралов влечет устойчивость положения равновесия. Тем самым теорема 2 дока-
зана.

Замечание 1. Если при некотором k  матрица kC  положительно определена, то мож-
но положить соответствующую матрицу 0kG = , т.е. гироскопические силы в данной 
подсистеме можно не применять. Размерность kn  при этом может быть и нечетной.

Замечание 2. Если при некотором k  матрица kC  знакопостоянная положительная 
(в частности, нулевая), то соответствующее значение 0 0kh = , т.е. гироскопические 
силы в данной подсистеме можно брать сколь угодно малыми.

Замечание 3. Утверждение теоремы 2 останется в  силе, если функция 
( )σ σ1 1, , , , ,m mf s s¼ ¼  зависит еще и от аргументов вида T

k k k kr q L q=  где матрицы kL  об-
ладают свойством T

k kG L  кососимметрична, например 2
k kL G= .

Пример 5. Гироскопическая стабилизация сильно вырожденного равновесия [5]. 
Рассмотрим систему с однородным потенциалом четной степени 2 p и гироскопиче-
скими силами, уравнения движения которой имеют вид

	 Π 0Gqq
q

¶
+ + =

¶
  	 (3.5)

	 ( ) ( ) ( )Π 2 2 2 2 2 2
1 2 1 2

p p

j j j nq q q q q q q+ += + +¼+ - + +¼+ ; 2p ³

Как установлено в [5], если j нечетно и det 0G ¹  (значит, n четно, и n j-  нечетно), то 
положение равновесия  0q q= =  системы (3.5) неустойчиво. Таким образом, при 
нечетном числе j “положительных квадратов” в потенциале гироскопическая стаби-
лизация при любой невырожденной матрице G невозможна.
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Если же n j-  четно, то из теоремы 2 следует, что гироскопическая стабилизация 
положения равновесия системы (3.5) обеспечивается при выборе матрицы G  в виде

	 1

2

0
0

G
G

G

æ ö÷ç ÷= ç ÷ç ÷÷çè ø
,

где 1G  – любая кососимметрическая j j´  матрица, а  2G  – любая невырожденная косо-
симметрическая ( ) ( )n j n j- ´ -  матрица. При этом j  может быть и нечетным, а ма-
трица 1G  нулевой.

Пример 6. Гироскопическая стабилизация системы с положительно однородным 
потенциалом нечетного порядка. Рассмотрим систему с положительно однородным 
потенциалом нечетного порядка 2 1p +  и гироскопическими силами, уравнения дви-
жения которой имеют вид

	 Π 0hGqq
q

¶
+ + =

¶
  , ( ) ( )Π

2 1
2 2 2 2
1 2

p

nq q q q
+

= - + +¼+ 	 (3.6)

Здесь p – некоторое натуральное число, а число координат n считается четным. По-
вторяя рассуждения доказательства теоремы 2, приходим к заключению, что для лю-

бой невырожденной кососимметрической матрицы G  при 
( )
( )

λ
µ

λ

max

min

T

T

G G
h

G G
> , где µ – 

произвольно малое положительное число, положение равновесия  0q q= =  
системы  (3.6) будет устойчиво. Отметим, что в  этом примере потенциал является 
положительно однородной функцией нечетного порядка 2 1p + , поскольку для лю-
бого числа 0c >  удовлетворяет равенству ( ) ( )Π Π2 1pcq c q+= . Однако этот потенциал 
не является однородной формой нечетной степени, для которых в [4] доказана невоз-
можность гироскопической стабилизации ни при каком выборе невырожденной 
матрицы G . Таким образом, свойства устойчивости для потенциалов, задаваемых 
однородными формами, могут существенно отличаться от аналогичных свойств по-
тенциалов, заданных положительно однородными функциями.

Пример 7. Гироскопическая стабилизация неустойчивого равновесия материаль-
ной точки на вершине симметричного холма. Рассмотрим систему двух уравнений:

	 ( ) ( )   

2 2 2 20, 0x gy x x y y gy y x y+ - + = - - + = ,	 (3.7)

где 0g >  и потенциал ( ) ( )Π
22 2, 4x y x y= - +  является отрицательно определенным, 

поэтому потенциальные силы отталкивают движущую точку от положения равнове-
сия. Из теоремы 2 следует, что положение равновесия системы (3.7) устойчиво.

Теперь рассмотрим аналогичную систему, но уже с  тремя степенями свободы, 
уравнения движения которой имеют вид

	 Π Π Π0, 0, 0x ay bz y ax cz z bx cy
x y z

¶ ¶ ¶
+ + + = - + + = - - + =

¶ ¶ ¶
       ,	 (3.8)

где потенциал ( ) ( )Π
22 2 2, , 4x y z x y z= - + +  аналогичен потенциалу для систе-

мы (3.7), а параметры , ,a b c определяют 3 3´  матрицу гироскопических сил G .
Для системы (3.8) имеются два интеграла, но указанная в доказательстве теоремы 2 

связка при любых значениях параметров , ,a b c не будет положительно определенной 
из-за вырожденности матрицы гироскопических сил G . Поэтому теорема  2 здесь не 
применима и  не позволяет установить возможность гироскопической стабилизации 
равновесия для системы (3.8). Численное интегрирование для множества фиксирован-
ных наборов параметров показало наличие траекторий, “уходящих” от состояния рав-
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новесия. Однако строго доказать неустойчивость равновесия системы (3.8) пока не уда-
лось. Теорема 1 из [5] здесь не применима, во-первых, из-за вырожденности матрицы G, 
и, во-вторых, из-за того, что потенциал является отрицательно определенной формой.

Заключение. В  заключение отметим кратко некоторые возможные направления 
развития полученных в  статье результатов. В  статье получены (теорема  1) условия 
существования дополнительного квадратичного интеграла специального вида для 
линейной системы с  потенциальными и  гироскопическими силами. Представляет 
интерес выяснить условия на слагаемые третьей и  более высоких степеней в  раз-
ложении потенциала в  ряд, которые обеспечивают принципиальную возможность 
продолжения дополнительного квадратичного интеграла в аналитический интеграл 
полной системы Подобный случай аналитического продолжения интеграла линей-
ной системы отмечался в [3], где использовалась другая конструкция квадратичного 
интеграла, предложенная в [8]. Поскольку вопрос о положительной определенности 
связки решается квадратичными слагаемыми интегралов, то для установления факта 
устойчивости строить реально такое продолжение интеграла не обязательно.

В теореме 2 явно указаны условия на потенциальную и  кинетическую энергию, 
обеспечивающие существование дополнительного интеграла для полной нелиней-
ной системы, а гироскопические силы используются линейные. Если рассматривать 
нелинейные управляющие гироскопические силы с матрицей ( ),G q q , зависящей от 
состояния, то возможно удастся расширить условия на нелинейные потенциальные 
силы, гарантирующие существование дополнительного интеграла.

Работа выполнена при финансовой поддержке Министерства науки и  высшего 
образования Российской Федерации (проект № 121032400051‑9).
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The problem of gyroscopic stabilization of the equilibrium position of nonlinear potential 
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