RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Shock wave and centered rarefaction fan in Noble–Abel gas

PII
10.31857/S0032823524060045-1
DOI
10.31857/S0032823524060045
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 6
Pages
874-886
Abstract
Planar supersonic flows of inviscid gas, obeyed the Abel – Noble (AN) equation of state, are considered. Formulas connecting flow parameters of considered gas before and after shock wave are obtained. Solution of Prandtl–Meyer problem for flow of AN gas in centered rarefaction fan is constructed. Critical values of velocity vectors turn angle in oblique shock wave and rarefaction fan are found. Comparisons with corresponding solution for perfect gas are given.
Keywords
сверхзвуковые течения газ Абеля–Нобля ударная волна течение Прандтля–Майера
Date of publication
01.06.2024
Year of publication
2024
Number of purchasers
0
Views
34

References

  1. 1. Neron L., Saurel R. Noble–Abel first-order virial equations of state for gas mixtures resulting of multiple condensed reactive materials combustion // Phys. Fluids. 2021. V. 93. P. 3090–3097.
  2. 2. Moore F. Approximate Methods for Weapon Aerodynamics. AIAA Pub., 2000. 464 p.
  3. 3. Брутян М.А., Ибрагимов У.Г., Меняйлов М.А. Автомодельные течения газа Абеля–Нобля в плоском диффузоре // Тр. МФТИ. 2023. Т. 15. № 3. С. 133–143.
  4. 4. Banks J.W. On exact conservation for the euler equations with complex equations of state // Commun. in Comput. Phys. 2010. V. 8. P. 995–1015.
  5. 5. Dumbser M, Casulli V. A conservative, weakly nonlinear semi-implicit finite volume scheme for the compressible Navier–Stokes equations with general equation of state // Appl. Math.&Comput. 2016. V. 272. Pt. 2. P. 479–497.
  6. 6. Tang X., Dzieminska E., Hayashi A.K. A preliminary discussion of the real gas effect on the isentropic expansion inlet boundary conditions of high-pressure hydrogen jets // Sci.&Technol. of Energetic Mater. 2019. V. 80. № 4. P. 150–158.
  7. 7. Menikoff R., Plohr B.J. The Riemann problem for fluid flow of real materials // Rev. of Modern Phys. 1989. V. 61. № 1. P. 75–130.
  8. 8. Radulescu M.I. Compressible flow in a Noble–Abel stiffened gas fluid // Phys. Fluids. 2020. V. 32. 056101. P. 1–5.
  9. 9. Zifeng Wenga, Remy Mevel, Chung K. Law. On the critical initiation of planar detonation in Noble–Abel and van der Waals gas // Combust.&Flame. 2023. V. 255. P. 112890. https://doi.org/10.1016/j.combustflame.2023.112890
  10. 10. Gonzales C.A.Q., Pizzuti L., Costa F. Propagation of combustion waves in Noble–Abel gases // 20th Int. Congr. of Mechanical Engineering. Nov. 15–20, 2009. Gramado, Brazil. P. 1–10.
  11. 11. Бай Ши-И. Введение в теорию течения сжимаемой жидкости. М.: Иностранная литература, 1962. 440 с.
  12. 12. Johnston I.A. The Noble–Abel Equation of State: Thermodynamic Derivations for Ballistics Modeling. Edinburgh, South Australia: DSTO, 2005.
  13. 13. Petrik G.G. Problems of low-parameter equations of state // J. of Phys.: Conf. Ser. 2017. V. 891. Art. No. 012328. https://doi.org/10.1088/1742-6596/891/1/012328
  14. 14. Брутян М.А. Основы трансзвуковой аэродинамики. М.: Наука, 2017. 175 с.
  15. 15. Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 735 с.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library