- Код статьи
- 10.31857/S0032823524040079-1
- DOI
- 10.31857/S0032823524040079
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 88 / Номер выпуска 4
- Страницы
- 594-621
- Аннотация
- Сформулирована задача расчета равновесной осесимметричной формы жидкой капли, покоящейся на недеформируемой горизонтальной плоскости. Впервые получено уравнение баланса сил, действующих на каплю в вертикальном направлении и замыкающее постановку рассматриваемой задачи. Разработан высокоточный численный метод решения поставленной нелинейной задачи. Исследована зависимость углов смачивания капель от варьирования входных данных задачи: химического состава капли, давления газа, силы дополнительного слабого взаимодействия (например, ван-дер-ваальсовых или электрохимического происхождения). Для капель малых диаметров показана возможность существования двух решений, которым соответствуют существенно разные углы смачивания: в первом решении углы смачивания меньше 90°, а во втором – больше 90°, достигая значений 160° и более. Существование двух равновесных форм капли малого диаметра подтверждено натурными экспериментами. Равновесные формы капель больших диаметров могут существовать только при наличии дополнительной слабой отталкивающей силы между жидкостью и опорной поверхностью, имеющей интенсивность порядка 10-7...10-5 Па. При этом для капель больших диаметров существует только одно решение.
- Ключевые слова
- моделирование равновесной формы капли расчетные углы смачивания гидрофильность гидрофобность супергидрофобность неединственность решения
- Дата публикации
- 01.04.2024
- Год выхода
- 2024
- Всего подписок
- 0
- Всего просмотров
- 26
Библиография
- 1. Войтик О.Л., Делендик К.И., Коляго Н.В., Рощин Л.Ю. Факторы, влияющие на характеристики смачивания частей паровой камеры // Инж.-физ. ж. 2020. Т. 93. № 5. С. 1126–1133.
- 2. Матюхин С.И., Фроленков К.Ю. Форма капель жидкости, помещенных на твердую горизонтальную поверхность // Конденс. среды и межфазные границы. 2013. Т. 15. № 3. С. 292–304.
- 3. Марчук И.В., Чеверда В.В., Стрижак П.А., Кабов О.А. Определение поверхностного натяжения и контактного угла смачивания по форме поверхности осесимметричных пузырей и капель // Теплофиз. и аэромех. 2015. Т. 22. № 3. С. 311–317.
- 4. Bai M., Kazi H., Zhang X., Liu J., Hussain T. Robust hydrophobic surfaces from suspension HVOF thermal sprayed rare-earth oxide ceramics coatings // Article in Sci. Rep. 2018. V. 8. № 1. P. 6973-1–6973-8.
- 5. Xu P., Coyle T.W., Pershin L., Mostaghimi J. Fabrication of superhydrophobic ceramic coatings via solution precursor plasma spray under atmospheric and low-pressure conditions // J. Therm. Spray Tech. 2019. V. 28. P. 242–254.
- 6. Гуляев И.П., Кузьмин В.И., Ковалев О.Б. Высокогидрофобные керамические покрытия, получаемые методом плазменного напыления порошковых материалов // Теплофиз. и аэромех. 2020. Т. 27. № 4. С. 615–625.
- 7. Contact Angle, Wettability, and Adhesion / ed. by Gould R.F. Washington: Amer. Chem. Soc. Advances in Chem. Ser, 1964.
- 8. Финн Р. Равновесные капиллярные поверхности. Математическая теория. М.: Мир, 1989. 312 с.
- 9. Русаков А.И., Прохоров В.А. Межфазная тензометрия. СПб.: Химия, 1994. 398 с.
- 10. Саранин В.А. Равновесие жидкостей и его устойчивость. Простая теория и доступные опыты. М.: Ин-т компьют. исслед., 2002. С. 73–76.
- 11. De Gennes P.G., Brochard-Wyart F., Quere D. Capillarity and Wetting Phenomena. Berlin: Springer, 2004.
- 12. Kupershtokh A.L., Lazebryi D.B. Contact angles in the presence of an electrical field // J. of Phys.: Conf. Ser. 2020. 1675. 012106. P. 1–6. https://doi.org/10.1088/1742-6596/1675/1/012106
- 13. Del Rio O.I., Neumann A.W. Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops // J. of Colloid&Interface Sci. 1997. V. 196. № 2. P. 136–147.
- 14. Zholob S.A., Makievski A.V., Miller R., Fainerman V.B. Optimization of calculation methods for determination of surface tensions by drop profile analysis tensiometry // Advances in Colloid&Interface Sci. 2007. № 134. 135. P. 332–329.
- 15. Кармо М.П. Дифференциальная геометрия кривых и поверхностей. М.;Ижевск: Ин-т компьют. исслед., 2013. 608 с.
- 16. Новожилов В.В. Теория тонких оболочек. СПб.: Изд-во С.-Петерб. ун-та, 2010. 380 с.
- 17. Власов В.З., Леонтьев Н.Н. Балки, плиты и оболочки на упругом основании. М.: Физматгиз, 1960. 491 с.
- 18. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
- 19. Холл Дж., Уатт Дж. Современные численные методы решения обыкновенных дифференциальных уравнений. М.: Мир, 1979. 312 с.
- 20. Деккер К., Вервер Я. Устойчивость методов Рунге–Кутты для жестких нелинейных дифференциальных уравнений. М.: Мир, 1988. 334 с.