RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Nonlinear stochastic estimation of the navigation parameters of the antenna of a mobile radio engineering complex by inertial-satellite measurements

PII
10.31857/S0032823524040049-1
DOI
10.31857/S0032823524040049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 4
Pages
549-566
Abstract
A general solution to the problem of stochastic estimation of navigation parameters of mast antennas of radio engineering complexes (RTCs) located on mobile objects is considered. It is shown that the existing methods for determining navigation parameters using measurements of satellite navigation systems or inertial orientation systems do not provide the required accuracy for solving this problem for such a class of antennas under the action of random disturbances on an object and/or mast. In this regard, an algorithm is proposed for stochastic estimation of the navigation parameters of a mast antenna of a radio engineering complex located on a mobile object, invariant both to the nature of the movement of the mast and to the nature of the movement of the object. It is shown that this algorithm makes it possible to ensure stability and the required accuracy of estimation under the most general assumptions about the nature of interference of sensitive elements (CE) using a strapless inertial orientation system (BIS). To solve the problem, in the most general case, the BISO includes two groups of CES consisting of three orthogonal accelerometers and three angular velocity sensors (ARC) located, respectively, in the centers of mass of the object and the antenna. The vectors of the Rodrigue–Hamilton parameters are used as the observed vectors of the navigation parameters of the antenna and the object, and the vector of the DUS output signals located in the center of mass of the antenna is used as their observer. Based on stochastic nonlinear equations of their state vectors and equations of stochastic models of DUS output signals constructed for the most general case of antenna and object motion, a generalized Kalman filter was formed, providing a general solution to the problem of estimating the navigation parameters of a mast antenna of arbitrary design placed on a moving object. The presented results of numerical modeling allow us to conclude that the proposed approach can be used to solve the problem of high-precision determination of navigation parameters of mast antennas of radio engineering complexes located on mobile objects, using medium and high-precision BIS without correction over a long period of time.
Keywords
мачтовая антенна подвижный объект нелинейная стохастическая оценка навигационные параметры пространственная ориентация параметры Родрига–Гамильтона
Date of publication
01.04.2024
Year of publication
2024
Number of purchasers
0
Views
31

References

  1. 1. Дардари Д., Фаллети Э., Луизе М. Методы спутникового и наземного позиционирования. Перспективы развития технологий обработки сигналов М.: Техносфера, 2012. 528 с.
  2. 2. Зайцев Д.В. Многопозиционные радиолокационные системы. Методы и алгоритмы обработки информации в условиях помех М.: Радиотехника, 2007. 96 с.
  3. 3. Коновалов А.А. Основы траекторной обработки радиолокационной информации С.Пб. Изд-во СПбГЭТУ «ЛЭТИ», 2013. 164 с.
  4. 4. Rapoport L., Barabanov I., Khvalkov A., Kutuzov A., Ashjaee J. Octopus: Multi antennae GPS/GLONASS RTK System // ION GPS-2000. P. 797–804.
  5. 5. Gebre-Egziabher D., Hayward R.C., Powell J.D. Design of multi-sensor attitude determination systems // IEEE Trans. on Aerospace&Electronic Syst. 2004. V. 40(2). P. 627–649.
  6. 6. Красильщиков М.Н., Себряков Г.Г. Современные информационные технологии в задачах навигации и наведения беспилотных маневренных летательных аппаратов. М.: Физматлит, 2009. 556 с.
  7. 7. Sokolov S.V., Pogorelov V.A. Measurements in information technologies nonlinear dynamic estimation of the orientation angles of a moving object from distributed satellite measurements // Meas. Tech. 2019. V. 62. № 3. P. 30–36
  8. 8. Лукасевич В.И., Погорелов В.А., Соколов С.В. Алгоритм оценки параметров вращения распределенной антенны по спутниковым измерениям // Радиотехника. 2015. № 6.С. 122–132.
  9. 9. Hirokawa R., Ebinuma T. A Low-cost tightly coupled GPS/INS for small UAVS augmented with multiple GPS antennas // Navigation: J. of the Inst. of Navigation. 2009. V. 56. № 1. P. 35–44.
  10. 10. Grewal M.S., Andrews A.P., Bartone C.G. Global Navigation Satellite Systems, Inertial Navigation, and Integration. Wiley, 2013.
  11. 11. Tijing Cai, Qimeng Xu, Emelyantsev G.I., Stepanov A.P., Daijin Zhou, Shuaipeng Gao, Yang Liu, Junxiang Huang. A multimode GNSS/MIMU integrated orientation and navigation system // ٢٦th St. Petersburg Int. Conf.on Integrated Navigation Syst. 2019.
  12. 12. Emelyantsev G.I., Stepanov A.P., Blazhnov B.A. Initial alignment of SINS measuring unit and estimation of its errors using satellite phase measurements // Gyroscopy&Navigation. 2019. V. 10. Iss. 2. P. 62–69.
  13. 13. Кинкулькин И.Е. Глобальные навигационные спутниковые системы. Алгоритмы функционирования аппаратуры потребления. М.: Радиотехника, 2018. 328 с.
  14. 14. Jahromi A.J., Broumandan A., Nielsen J., Lachapelle G. GPS vulnerability to spoofing threats and a review of anti-spoofing techniques // Int. J. of Navigation&Observation. 2012. V. 2012. Art. ID 127072. P. 1–16.
  15. 15. Baziar A.R., Moazedi M., Mosavi M.R. Analysis of single frequency GPS receiver under delay and combining spoofing algorithm // J. of Wireless Personal Commun. 2015. V. 83. № 3. P. 1955–1970.
  16. 16. Bhatti J., Humphreys T.E. Hostile Control of ships via false GPS signals: demonstration and detection // J. of the Inst. of Navigation. 2017. V. 64(1). P. 51–66.
  17. 17. Psiaki M.L., O’Hanlon B.W., Powell S.P., Bhatti J.A., Humphreys T.E., Schofield A. GNSS lies, GNSS truth: Spoofing detection with two-antenna differential carrier phase // GPS World. 2014. V. 25. № 11. P. 36–44.
  18. 18. Salychev O.S. Verified approaches to inertial navigation. М.: BMSTU Pub., 2017. 368 p.
  19. 19. Матвеев В.В., Распопов В.Я. Приборы и системы ориентации, стабилизации и навигации на МЭМС датчиках. Тула: Изд-во ТулГУ, 2017. 225 с.
  20. 20. Розенберг И.Н., Соколов С.В., Уманский В.И., Погорелов В.А. Теоретические основы тесной интеграции инерциально-спутниковых навигационных систем. М.: Физматлит, 2018. 312 с.
  21. 21. Емельянцев Г.И., Степанов А.П. Интегрированные инерциально-спутниковые системы ориентации и навигации / Под ред. Пешехонова В.Г. СПб.: ГНЦ РФ АО «Концерн «ЦНИИ «Электроприбор», 2016. 394 с.
  22. 22. Sokolov S.V., Pogorelov V.A., Shatalov A.B. Solving the autonomous initial navigation task for strapdown inertial navigation system on the perturbed basis using Rodriguez–Hamilton parameters // Rus. Aeronaut. 2019. V. 62. № 1. P. 42–51.
  23. 23. Челноков Ю.Н. Кватернионные модели и методы динамики, навигации и управления движением. М.: Физматлит, 2011. 560 с.
  24. 24. Синицын И.Н. Фильтры Калмана и Пугачева. М.: Логос, 2006. 640 с.
  25. 25. Ишлинский А.Ю. Ориентация, гироскопы и инерциальная навигация. М.: Наука, 1976. 670 с.
  26. 26. Миллер Б.М., Колосов К.С. Робастное оценивание на основе метода наименьших модулей и фильтра Калмана // Автоматика и телемех. 2020. № 11. С. 72–92.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library