RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Evanescent Acoustic Waves

PII
10.31857/S0032823524030089-1
DOI
10.31857/S0032823524030089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 3
Pages
447-455
Abstract
A theoretical study of “geometric” SP-evanescent (head) waves propagating in an isotropic homogeneous half-space or half-plane with a free boundary shows that these waves can satisfy the condition of absence of effort on the boundary plane if and only if the Lamé parameter λ is vanishingly small, which makes the existence of head waves of this type practically impossible. The analysis is based on the Helmholtz representation for the displacement field in combination with the decomposition of the stress and strain tensor into spherical and deviatoric parts. The obtained result about the non-existence of this type of evanescent waves can find application in theoretical geophysics in the study of seismic wave fields in the vicinity of earthquake epicenters, as well as in non-destructive acoustic diagnostic methods.
Keywords
эванесцентная волна головная волна упругая среда изотропия представление Гельмгольца
Date of publication
01.03.2024
Year of publication
2024
Number of purchasers
0
Views
26

References

  1. 1. Pekeris C.L. The seismic buried pulse // Proc. Nat. Acad. Sci. 1955. V. 41. P. 629–639.
  2. 2. Terentjeva E.O. et al. Planar internal Lamb problem: Waves in the epicentral zone of a vertical power source // Acoust. Phys. 2015. V. 61. P. 356–367.
  3. 3. Meykens K., van Rompaey B., Janssen H. Dispersion in acoustic waveguides – A teaching laboratory experiment // Am.J. Phys. 1999. V. 67(5). P. 400–406.
  4. 4. de Fornel F. Evanescent Waves: From Newtonian Optics to Atomic Optics. Berlin: Springer, 2001. 265 p.
  5. 5. Yamamoto K., Sakiyama T., Izumiya H. Visualization of acoustic evanescent waves by the stroboscopic photoelastic method // Phys. Proc. 2015. V. 70. P. 716–720.
  6. 6. Mohorovičić A. Das Beben vom 8. X. 1909 // Jahrbuch des Meteorol. Obser. in Zagreb (Agram). 1910. P. 1–63.
  7. 7. Jeffreys H. On compressional waves in two superposed layers // Math. Proc. Cambridge Philos. Soc. 1926. V. 23(4). P. 472–481.
  8. 8. Muskat M. The theory of refraction shooting // Physics. 1933. V. 4. P. 14–28.
  9. 9. Heelan P.A. On the theory of head waves // Geophys. 1953. V. 18. P. 871–893.
  10. 10. O’Brien P.N.S. Model seismology – the critical refraction of elastic waves // Geophys. 1955. V. 20. P. 227–242.
  11. 11. Levin F.K., Ingram J.D. Head waves from a bed of finite thickness // Geophys. 1962. V. 27. P. 753–765.
  12. 12. Nakamura Y. Multi-reflected head waves in a single-layered medium // Geophys. 1966. V. 31. P. 927–939.
  13. 13. Datta S., Bhowmick A.N. Head waves in two-dimensional seismic models // Geophys. Prospect. 1969. V. 17(4). P. 419–432.
  14. 14. Cerveny V., Ravindra R. Theory of Seismic Head Waves. Toronto: Toronto Univ. Press, 1971. 328 p.
  15. 15. Cerveny V. Theory of seismic head waves // Am.J. Phys. 1973. V. 41(5). P. 755–757.
  16. 16. Zhou H., Chen Y. Ray path of head waves with irregular interfaces // Appl. Geophys. 2010. V. 7(1). P. 66–73.
  17. 17. Li S.J. et al. Hybrid asynchronous absorbing layers based on Kosloff damping for seismic wave propagation in unbounded domains // Comp. Geotech. 2019. V. 109. P. 69–81.
  18. 18. Li S.J. et al. Explicit/implicit multi-time step co-simulation in unbounded medium with Rayleigh damping and application for wave barrier // Eur. J. Environ. Civ. Eng. 2020. V. 24. P. 2400–2421.
  19. 19. Zhang J., Zhang H.-M., Chen X. Characteristics of head wave in multi-layered half-space // Acta Seism. Sinica. 2022. V. 15(6). P. 585–594.
  20. 20. Lapwood E.R. The disturbance due to a line source in a semi-infinite medium // Phil. Trans. A. 1949. V. 242. P. 63–100.
  21. 21. Cagniard L. Reflection and Refraction of Progressive Seismic Waves. New York: McGraw-Hill, 1962. 282 p.
  22. 22. Burridge R., Lapwood E.R., Knopoff L. First motions from seismic sources near a free surface // Bull. Seism. Soc. Am. 1964. V. 54. P. 1889–1913.
  23. 23. Dmitriev V.F., Noskov A.N. Theoretical and experimental studies of quasi-surface acoustic wave resonators // Acoust. Phys. 2010. V. 56. P. 475–4481.
  24. 24. Dai Y., Yan S., Zhang B. Acoustic field excited by single force with arbitrary direction in semi-infinite elastic space // Acoust. Phys. 2019. V. 65. P. 235–245.
  25. 25. Schweitzer J., Storchak D.A., Borman P. Seismic phase nomenclature: The IASPEI standard // in: Encycl. of Solid Earth Geophys. / Ed. by Gupta H.K. Encycl. of Earth Sci. Ser. Berlin: Springer, 2021. 1950 p.
  26. 26. Kausel E. Lamb’s problem at its simplest // Proc. Roy. Soc. A. 2012. V. 469(2149). P. 20120462–20120462.
  27. 27. Kuznetsov S.V. Surface waves of non-Rayleigh type // Quart. Appl. Math. 2003. V. 61. P. 575–582.
  28. 28. Goldstein R.V. et al. Long-wave asymptotics of Lamb waves // Mech. Solids. 2017. V. 52. P. 700–707.
  29. 29. Emami M., Eskandari-Ghadi M. Transient interior analytical solutions of Lamb’s problem // Math. Mech. Solids. 2019. V. 24(11). P. 3485–43513.
  30. 30. Aki K., Richards P.G. Quantitative Seismology: Theory and Methods. Vol. 1. San Francisco: Freeman Co., 1980. 700 p.
  31. 31. Ben-Menahem A., Singh S.J. Seismic Waves and Sources. Berlin: Springer, 1981. 1108 p.
  32. 32. Kuznetsov S.V. Love waves in stratified monoclinic media // Quart. Appl. Math. 2004. V. 62(4). P. 749–766.
  33. 33. Su Y. et al. Supervirtual refraction interferometry in the Radon domain // Remote Sensing. 2023. V. 15(2). Paper №384.
  34. 34. Breckenridge F.R., Tschiegg C.E., Greenspan M. Acoustic emission: some applications of Lamb’s problem // J. Acoust. Soc. Am. 1975. V. 57. P. 626–631.
  35. 35. Phan H., Cho Y., Achenbach J.D. Verification of surface wave solutions obtained by the reciprocity theorem // Ultrasonics. 2014. V. 54. P. 1891–1894.
  36. 36. Kuznetsov S.V. Stoneley waves at the generalized Wiechert condition // Z. Angew. Math. Phys. 2020. V. 71. Paper №180.
  37. 37. Poruchikov V.B. Methods of the Classical Theory of Elastodynamics. Berlin: Springer, 1993. 329 p.
  38. 38. Roth M., Holliger K. The non-geometric PS wave in high-resolution seismic data: observations and modeling // Geophys. J. 2000. V. 140. P. F5–F11.
  39. 39. Kuznetsov S.V. Love waves in layered anisotropic media // JAMM. 2006. V. 70. P. 116–127.
  40. 40. Il’yasov K.K. et al. Exterior 3D Lamb problem: Harmonic load distributed over a surface // Mech. Solids. 2016. V. 51. P. 39–45.
  41. 41. Buchen P.W. The elastodynamic Green’s tensor for the 2D half-space // J. Austral. Math. Soc. 1978. V. 20. P. 385–440.
  42. 42. Ilyashenko A.V. et al. Theoretical aspects of applying Lamb waves in nondestructive testing of anisotropic media // Russ. J. Nondestruct. Test. 2017. V. 53. P. 243–259.
  43. 43. Chapman Ch. Head-wave coefficients in anisotropic media // Geophys. J. Int. 2018. V. 214. P. 164–184.
  44. 44. Kuznetsov S.V. Closed form analytical solution for dispersion of Lamb waves in FG plates // Wave Motion. 2019. V. 84. P. 1–7.
  45. 45. Karakozova A., Kuznetsov S. Head waves in modified Weiskopf sandy medium // Axioms. 2023. V. 12. Paper №679.
  46. 46. Gurtin M.E. The linear theory of elasticity // in: Linear Theories of Elasticity and Thermoelasticity / Ed. by Truesdell C. Berlin, Heidelberg: Springer, 1973. 295 p.
  47. 47. Auld B.A. Acoustic Fields and Waves in Solids, Malabar, Florida: Krieger Pub. Co., 1990. 446 p.
  48. 48. Kuznetsov S.V. Seismic waves and seismic barriers // Acoust. Phys. 2011. V. 57. P. 420–426.
  49. 49. Dudchenko A.V. et al. Vertical wave barriers for vibration reduction // Arch. Appl. Mech. 2021. V. 91. P. 257–276.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library