RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Fracture Criteria for Matrix and Fibers in Unidirectional Polymeric Composites at Static Loadings

PII
10.31857/S0032823524020078-1
DOI
10.31857/S0032823524020078
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 88 / Issue number 2
Pages
255-270
Abstract
When analyzing the strength of structures made of layered fibrous polymer composite materials; the criteria for failure of a monolayer – a unidirectional reinforced composite – are used. A criterion of strength according to the conditions of matrix fracture is formulated, corresponding to conical limiting surfaces and the lowest destructive loads. The criterion of strength according to the condition of fiber failure, which does not allow the paradox of increasing strength in the region of transition from fiber destruction to matrix failure, is given. Experimental verification of the criteria for volumetric, planar, and one-dimensional loads is carried out. Their better correspondence to empirical data is shown and their advantages in comparison with known criteria are marked. A small number of easily detectable parameters of these criteria contribute to their reliability and stability in strength calculations of composite structural elements.
Keywords
разрушение прочность композиты полимеры однонаправленный материал
Date of publication
01.02.2024
Year of publication
2024
Number of purchasers
0
Views
26

References

  1. 1. Hashin Z., Rotem A. A. Fatigue failure criterion for fiber reinforced materials // J. Compos. Mater. 1973. V. 7. P. 448–464.
  2. 2. Rabotnov Yu.N., Polilov A. N. Strength criteria for fibre-reinforced plastics // Fracture. 1977. Vol. 3, Pp. 1059–1065.
  3. 3. Полилов А. Н. Критерии разрушения поверхности раздела в однонаправленных композитах // Изв. АН СССР. МТТ. 1978. № 2. С. 115–119.
  4. 4. Hashin Z. Failure criteria for unidirectional fiber composites // J. Appl. Mech. 1980. V. 47. P. 329–334.
  5. 5. Puck A. Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis. München; Wien: Hanser, 1996. 212 s.
  6. 6. Puck A., Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models // Compos. Sci.&Technol. 1998. V. 58. P. 1045–1067.
  7. 7. Puck A., Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models // Compos. Sci.&Technol. 2002. V. 62. P. 1633–1662.
  8. 8. Soden P.D., Hinton M. J., Kaddour A. S. A comparison of the predictive capabilities of current failure theories for composite laminates // Compos. Sci.&Technol. 1998. V. 58. P. 1225–1254.
  9. 9. Kaddour A.S., Hinton, M.J., Soden P. D. A comparison of the predictive capabilities of current failure theories for composite laminates: additional contributions // Compos. Sci.&Technol. 2004. V. 64. P. 449–476.
  10. 10. Полилов А.Н., Татусь Н. А. Экспериментальное обоснование критериев прочности волокнистых композитов, проявляющих направленный характер разрушения // Вестн. ПНИПУ. Механика. 2012. № 2. С. 140–166.
  11. 11. Олейников А. И. Варианты критерия прочности однонаправленных полимерных композитов по условию разрушения связующего при наличии сжатия перпендикулярно волокнам // ПММ. 2022. T. 86. № 2. C. 223–234.
  12. 12. Thomson D.M., Cui H., Erice B., Hoffmann J., Wiegand J., Petrinic N. Experimental and numerical study of strain-rate effects on the IFF fracture angle using a new efficient implementation of Puck’s criterion // Compos. Struct. 2017. V. 181. P. 325–335.
  13. 13. Gong Y., Huang T., Zhang X., Jia P., Suo Y., Zhao S. A reliable fracture angle determination algorithm for extended Puck’s 3D inter-fiber failure criterion for unidirectional composites // Mater. 2021. V. 14/6325. P. 1–14.
  14. 14. Олейников А. И. Критерий прочности элементов моделей ЛА из однонаправленных композитов // Матер. XXXIII научно-технич. Конф. по аэродин. ЦАГИ. 2022. С. 84–85.
  15. 15. Cuntze R., Deska R., Szelinski B., et al. Neue Bruchkriterien und Festigkeitsnachweise für unidirektionalen Faserkunststoffverbundunter mehrachsiger Beanspruchung – Modellbildung und Experimente. Düsseldorf: VDI Verlag, 1997. 262 s.
  16. 16. Kaiser C., Kuhnel E., Obst A. Failure criteria for FRP and CMC: theory, experiments and guidelines // Europ. Conf. on Spacecr. Struct. Mater. Mech. Testing. Noordwijk, ESA, 2005. 12 p.
  17. 17. Dávila C.G., Camanho P. P. Failure Criteria for FRP Laminates in Plane Stress. Hampton: NASA Langley Res. Center. NASA/TM-2003–212663, 2003. 28 p.
  18. 18. Полилов А. Н. Определение прочности при изгибе криволинейных образцов // Машиновед. 1984. № 1. С. 54–60.
  19. 19. Олейников А. И. Оценка статической прочности слоистых композитов // Уч. зап. ЦАГИ. 2019. Т. L. № 4. С. 53–66.
  20. 20. Kawai M., Itoh N. A failure-mode based anisomorphic constant life diagram for a unidirectional carbon/epoxy laminate under off-axis fatigue loading at room temperature // J. Compos. Mater. 2014. V. 48(5). P. 571–592.
  21. 21. Shin E.S., Pae K. D. Effects of hydrostatic pressure on the torsional shear behaviour of graphite/epoxy composites // J. Compos. Mater. 1992. V. 26. P. 462–485.
  22. 22. Shin E.S., Pae K. D. Effects of hydrostatic pressure on in-plane shear properties of graphite/epoxy composites // J. Compos. Mater. 1992. V. 26. P. 828–868.
  23. 23. Hinton M.J., Kaddour A. S. Benchmark data triaxial test results for fibre-reinforced composites: the second world-wide failure exercise // J. Compos. Mater. 2012. V. 47. P. 633–678.
  24. 24. Cuntze R. The predictive capability of failure mode concept-based strength conditions for laminates composed of unidirectional laminae under static triaxial stress states // J. Compos. Mater. 2012. V. 46. P. 2563–2594.
  25. 25. Deuschle H. M., Puck A. Application of the Puck failure theory for fibre reinforced composites under 3D-Stress: comparison with experimental results // J. Compos. Mater. 2013. V. 47. P. 827–846.
  26. 26. Carrere N., Laurin F., Maire J-F. Micromechanical based hybrid mesoscopic 3D approach for non-linear progressive failure analysis of composite structures // J. Compos. Mater. 2012. V. 46. P. 2389–2415.
  27. 27. Pinho S.T., Darvizeh R., Robinson P., et al. Material and structural response of polymer-matrix fibre-reinforced composites // J. Compos. Mater. 2012. V. 46. P. 2313–2341.
  28. 28. Hütter U., Schelling H., Krauss H. An experimental study to determine the failure envelope of composite materials with tubular specimens under combined loads and comparison between several classical criteria // in: Failure Modes of Composite Materials with Organic Matrices and Other Consequences on Design. Munich: NATO. AGRAD. Conf. Proc. № 163. 1974. P. 13–19.
  29. 29. Soden P.D., Hinton M. J., Kaddour A. S. Biaxial test results for strength and deformation of a range of E-glass and carbon fibre reinforced composite laminates: failure exercise benchmark data // Compos. Sci.&Technol. 2002. V. 62. P. 1489–1514.
  30. 30. Tsai S.W., Wu E. M. A general theory of strength for anisotropic materials // J. Compos. Mater. 1971. V. 5. P. 58–80.
  31. 31. Liu K.-S., Tsai S. W. A progressive quadratic failure criterion for a laminate // Compos. Sci. Technol. 1998. V. 58. P. 1023–1032.
  32. 32. Rotem A. The Rotem failure criterion: theory and practice // Compos. Sci. Technol. 2002. V. 62. P. 1663–1671.
  33. 33. Davila C.G, Camanho P. P., Rose C. A. Failure criteria for FRP laminates // J. Compos. Mater. 2005. V. 39. P. 323–345.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library