- PII
- 10.31857/S0032823524010071-1
- DOI
- 10.31857/S0032823524010071
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 88 / Issue number 1
- Pages
- 95-103
- Abstract
- The problem of acceleration from a state of rest of a shear flow in a viscoplastic half-plane is studied analytically when a tangential stress is specified at the boundary. It is assumed that the dynamic viscosity and density of the medium are constant, and the yield stress can change in a continuous or discontinuous manner depending on the depth. The entire half-plane at any moment of time consists of previously unknown layers where shear flow occurs and rigid zones. The latter can move as a rigid whole, or they can be motionless, such as, for example, a half-plane, to which disturbances caused by the action of tangential forces have not yet reached. To find the stress and velocity fields, a method is developed based on quasi-self-similar diffusion-vortex solutions of parabolic problems in areas with moving boundaries. The question of what conclusions about the depth distribution of the yield stress can be drawn from available measurements of the velocity of the half-plane boundary is discussed.
- Keywords
- вязкопластическая среда предел текучести разгон касательное напряжение интенсивность напряжений одномерное сдвиговое течение жесткая зона диффузия вихревого слоя
- Date of publication
- 01.01.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 30
References
- 1. Банько В.А., Георгиевский Д.В. Квазиавтомодельные решения некоторых параболических задач в теории вязкопластического течения // Вестн. МГУ. Сер. 1. Матем., мех. 2023. № 4. С. 39–45.
- 2. Огибалов П.М., Мирзаджанзаде А.Х. Нестационарные движения вязкопластичных сред. М.: Изд-во МГУ, 1977. 372 с.
- 3. Мейрманов А.М. Задача Стефана. Новосибирск: Наука, 1986. 240 с.