ОЭММПУПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

К задаче об оптимальном повороте твердого тела при помощи внутренних сил

Код статьи
10.31857/S0032823523060085-1
DOI
10.31857/S0032823523060085
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 87 / Номер выпуска 6
Страницы
954-969
Аннотация
В статье получены результаты, касающиеся численно-аналитического решения задачи о максимальном повороте твердого тела на заданном интервале времени путем перемещения подвижной внутренней массы. Движения массы реализуются при помощи приложения ограниченной силы. Ранее рассматривались аналогичные задачи, в которых перемещения внутренней массы предполагались кинематическими с ограничениями на скорость точки. Полученный аналитический результат описывается простыми и легко проверяемыми формулами. Оптимальная траектория подвижной внутренней массы является спиралью, которая накручивается на центр масс самого твердого тела с возрастающей до бесконечности частотой. Полученные численные результаты касаются построения иных оптимальных траекторий, которые не поддаются аналитическому исследованию.
Ключевые слова
оптимальное управление принцип максимума Понтрягина динамика твердого тела
Дата публикации
01.06.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
29

Библиография

  1. 1. Аппель П. Теоретическая механика. Т. 2: Динамика системы. Аналитическая механика. М.: Ленанд, 2021. 504 с.
  2. 2. Татаринов Я.В. Лекции по классической динамике. М.: Изд-во МГУ, 1984. 296 с.
  3. 3. Chernousko F.L. Optimal control of two-dimensional motions of a body by a movable mass // Prepr. IX Vienna Int. Conf. on Math. Model. (MATHMOD). Vienna, February 21–23, 2018. Pap. WeD4.2. Vienna, 2018. P. 253–256.
  4. 4. Черноусько Ф.Л. Оптимальное управление движением двухмассовой системы // Докл. РАН. 2018. Т. 480. № 5. С. 528–532.
  5. 5. Черноусько Ф.Л. Изменение ориентации твердого тела при помощи вспомогательной массы // Докл. РАН. 2020. Т. 490. № 1. С. 79–81.
  6. 6. Шматков А.М. Поворот тела за кратчайшее время перемещением точечной массы // Докл. РАН. 2018. Т. 481. № 5. С. 498–502.
  7. 7. Розенблат Г.М. Об оптимальном повороте твердого тела при помощи внутренних сил // Докл. РАН. 2022. Т. 505. № 1. С. 92–99.
  8. 8. Решмин С.А., Розенблат Г.М. Численно-аналитическое исследование оптимального поворота твердого тела при помощи внутренних сил // Межд. науч. конф. “Фундаментальные и прикладные задачи механики”. Москва, 6–9 декабря 2022 г. Матер. конф. Ч. 1. М.: Изд. МГТУ им. Н.Э. Баумана, 2023. С. 182–188.
  9. 9. Понтрягин Л.С., Болтянский В.Г., Гамкрелидзе Р.В., Мищенко Е.Ф. Математическая теория оптимальных процессов. М.: ГИФМЛ, 1961. 391 с.
  10. 10. Klimov D.M., Zhuravlev V.Ph. Group-Theoretic Methods in Mechanics and Applied Mathematics. London; New York: Taylor&Francis, 2002. 230 p.
  11. 11. Решмин С.А. Применение метода Ньютона при решении краевых задач принципа максимума на примере задачи об оптимальном раскручивании двухмассовой системы // Modern Europ. Res. 2021. № 2 (Т. 1). С. 114–122.
  12. 12. Козлов В.В. Рациональные интегралы квазиоднородных динамических систем // ПММ. 2015. Т. 79. № 3. С. 307–316.
  13. 13. Шамолин М.В. Новые случаи интегрируемых систем нечетного порядка с диссипацией // Докл. РАН. 2020. Т. 491. № 1. С. 95–101.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека