RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Constraints in the Problem of Calculating Optimal Trajectories for a Supersonic Non-Maneuverable Aircraft

PII
10.31857/S0032823523040070-1
DOI
10.31857/S0032823523040070
Publication type
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 4
Pages
631-641
Abstract
The influence of phase and other constraints on the method of searching for the trajectories of the movement of a civil supersonic aircraft, which are optimal in terms of fuel consumption, is considered. Based on the solutions found by the dynamic programming method, taking into account numerous restrictions on flight altitude, pitch angle, normal high-speed overload, aircraft speed, engine thrust, etc., it is shown that almost all of these conditions can be ignored during the initial stage of calculations, since the optimal solution does not reach them. Therefore, one can first apply the maximum principle, and use the dynamic programming method only in those cases where a substantial part of the constraints turns out to be significant.
Keywords
сверхзвуковой самолет оптимальная траектория фазовое ограничение метод динамического программирования принцип максимума
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
29

References

  1. 1. Pontryagin L.S., Boltyanskii V.G., Gamkrelidze R.V., Mishchenko E.F. The Mathematical Theory of Optimal Processes. New York: Wiley, 1963.
  2. 2. Bellman R. Dynamic Programming. Princeton: Univ. Press, 1957.
  3. 3. Rosenow J., Strunck D., Fricke H. Trajectory optimization in daily operations // CEAS Aeronaut. J. 2020. V. 11. P. 333–343.
  4. 4. Murrieta-Mendoza A., Botez R.M. Methodology for vertical-navigation flight-trajectory cost calculation using a performance database // J. Aerosp. Inf. Syst. 2015. V. 12. № 8. P. 519–532.
  5. 5. Alligier R. Predictive distribution of mass and speed profile to improve aircraft climb prediction // J. Air Transp. 2020. V. 28. № 3. P. 114–123.
  6. 6. Franco A., Rivas D. Optimization of multiphase aircraft trajectories using hybrid optimal control // J. Guid. Control Dyn. 2015. V. 38. № 3. P. 452–467.
  7. 7. Murrieta-Mendoza A., Romain C., Botez R.M. 3D cruise trajectory optimization inspired by a shortest path algorithm // Aerospace. 2020. № 7. P. 99–119.
  8. 8. Soler M., Olivares A., Staffetti E. Multiphase optimal control framework for commercial aircraft four-dimensional flight-planning problems // J. Aircr. 2015. V. 52. № 1. P. 274–286.
  9. 9. Garca-Heras J., Soler M., Saez F.J. Collocation methods to minimum-fuel trajectory problems with required time of arrival in ATM // J. Aerosp. Inf. Syst. 2016. V. 13. № 7. P. 243–265.
  10. 10. Langelaan J.W. Long distance/duration trajectory optimization for small UAVs // in: AIAA Guidance, Navigation and Control Conf. South Carolina: Hilton Head, 2007. P. 3654–3667.
  11. 11. Rosenow J., Lindner M., Scheiderer J. Advanced flight planning and the benefit of in-flight aircraft trajectory optimization // Sustainability. 2021. V. 13. № 3. P. 1383–1401.
  12. 12. Кумакшев С.А., Шматков A.M. Траектории гражданского сверхзвукового самолета, оптимальные по расходу топлива // Изв. РАН ТиСУ. 2022. № 5. С. 118–130.
  13. 13. Rosenow J., Förster S., Lindner M., Fricke H. Multi-objective trajectory optimization // Int. Transp. 2016. V. 68. № 1. P. 40–43.
  14. 14. Kumakshev S.A., Shmatkov A.M. Flight Trajectory optimization without decomposition into separate stages // IOP Conf. Ser. Mater. Sci. Eng. 2018. V. 468. № 012033.
  15. 15. Бочкарев А.Ф., Андреевский В.В., Белоконов В.М. и др. Аэромеханика самолета: динамика полета. М.: Машиностроение, 1985.
  16. 16. Grevtsov N.M., Kumakshev S.A., Shmatkov A.M. Optimization of the flight trajectory of a non-manoeuvrable aircraft to minimize fuel consumption by the dynamic programming method // JAMM. 2017. V. 81. Iss. 5. P. 368–374.
  17. 17. Желнин Ю.Н., Утёмов А.Е., Шматков А.М. Оптимальный по быстродействию маневр “петля” без потери скорости // Изв. РАН. ТиСУ. 2012. № 6. С. 170–185.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library