RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Elastic Waves Trapped by Semi-Infinite Strip with Clamped Lateral Sides and a Curved or Broken End

PII
10.31857/S0032823523020108-1
DOI
10.31857/S0032823523020108
Publication type
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 2
Pages
265-279
Abstract
We show several geometric conditions of trapping elastic waves by homogeneous isotropic strip with one or two fixed lateral sides and arbitrarily curved end. Shapes of the resonator are found that support any given in advance number of linearly independent trapped modes.
Keywords
Date of publication
01.02.2023
Year of publication
2023
Number of purchasers
0
Views
25

References

  1. 1. Назаров С.А. Двумерные асимптотические модели тонких цилиндрических упругих прокладок // Дифф. уравн. 2022. Т. 58. № 12. C. 1666–1682.
  2. 2. Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973.
  3. 3. Фикера Г. Теоремы существования в теории упругости. М.: Мир, 1974.
  4. 4. Бирман М.Ш., Соломяк М.З. Спектральная теория самосопряженных операторов в гильбертовом пространстве. Л.: изд-во Ленингр. ун-та, 1980.
  5. 5. Камоцкий И.В., Назаров С.А. О собственных функциях, локализованных около кромки тонкой области // Пробл. матем. анализа. 1999. Вып. 19. С. 105–148.
  6. 6. Кондратьев В.А. Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками // Тр. Московск. матем. об-ва. 1963. Т. 16. С. 219–292.
  7. 7. Nazarov S.A., Plamenevsky B.A. Elliptic Problems in Domains with Piecewise Smooth Boundaries. Berlin, New York: Walter de Gruyter, 1994.
  8. 8. Назаров С.А. Полиномиальное свойство самосопряженных эллиптических краевых задач и алгебраическое описание их атрибутов // УМН. 1999. Т. 54. № 5. С. 77–142.
  9. 9. Камоцкий И.В., Назаров С.А. Экспоненциально затухающие решения задачи о дифракции на жесткой периодической решетке // Матем. заметки. 2003. Т. 73. № 1. С. 138–140.
  10. 10. Назаров С.А. Вариационный и асимптотический методы поиска собственных чисел под порогом непрерывного спектра // Сибирск. матем. ж. 2010. Т. 51. № 5. С. 1086–1101.
  11. 11. Molchanov S., Vainberg B. Scattering solutions in networks of thin fibers: small diameter asymptotics // Comm. Math. Phys. 2007. V. 273. № 2. P. 533—559.
  12. 12. Grieser D. Spectra of graph neighborhoods and scattering // Proc. London Math. Soc. 2008. V. 97. № 3. P. 718–752.
  13. 13. Назаров С.А. Пороговые резонансы и виртуальные уровни в спектре цилиндрических и периодических волноводов // Изв. РАН. Сер. матем. 2020. Т. 84. № 6. С. 73–130.
  14. 14. Mazja W.G., Nasarow S.A., Plamenewski B.A. Asymptotische Theorie elliptischer Randwertaufgaben in singulär gestörten Gebieten. 1 & 2 Berlin: Akademie, 1991.
  15. 15. Назаров С.А. Асимптотическая теория тонких пластин и стержней. Понижение размерности и интегральные оценки. Новосибирск: Науч. книга, 2002.
  16. 16. Назаров С.А. Упругие волны, захваченные однородным анизотропным полуцилиндром // Матем. сб. 2013. Т. 204. № 11. С. 99–130.
  17. 17. Назаров С.А. Околовершинная локализация собственных функций задачи Дирихле в тонких многогранниках // Сибирск. матем. ж. 2013. Т. 54. № 3. С. 655–672.
  18. 18. Бабич В.М., Булдырев В.С. Асимптотические методы в задачах дифракции коротких волн. М.: Наука, 1972.
  19. 19. Михлин С.Г. Вариационные методы в математической физике. М.: Наука, 1970.
  20. 20. Campbell A., Nazarov S.A., Sweers G.H. Spectra of two-dimensional models for thin plates with sharp edges // SIAM J. Math. Anal. 2010. V. 42. № 6. P. 3020–3044.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library