RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Flow Structure of a Three-Dimensional Turbulent Wall Jet

PII
10.31857/S0032823523020078-1
DOI
10.31857/S0032823523020078
Publication type
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 2
Pages
226-239
Abstract
A numerical simulation is conducted to study the flow of a three-dimensional incompressible wall jet. The study is aimed to determine the flow structure and to compare the propagation mechanisms of turbulent and laminar wall jets. The numerical solution of the Navier–Stokes equations in the turbulent case is obtained using the wall-resolved large eddy simulation. The simulation results are compared with experimental data.
Keywords
пристенная струя автомодельность метод крупных вихрей
Date of publication
01.02.2023
Year of publication
2023
Number of purchasers
0
Views
25

References

  1. 1. Акатнов Н.И. Распространение плоской ламинарной струи вязкой жидкости вдоль твердой стенки // Тр. Ленингр. политехн. ин-та. 1953. № 5. С. 24–31.
  2. 2. Glauert M.B. The wall jet // J. Fluid Mech. 1956. V. 1. P. 625–643
  3. 3. Schlichting H. Laminare Strahlausbreitung // Z. Angew. Math. Mech. 1933. Bd. 13. H. 4. S. 260–263.
  4. 4. Ландау Л.Д. Об одном точном решении уравнений Навье–Стокса // Докл. АН СССР. 1944. Т. 43. № 7. С. 299–301.
  5. 5. Бут И.И., Гайфуллин А.М., Жвик В.В. Дальнее поле трехмерной пристенной ламинарной струи // Изв. РАН. МЖГ. 2021. № 6. С. 51–61.
  6. 6. Gaifullin A.M., Shcheglov A.S. Self-similarity of a wall jet with swirl // Lobachevskii J. Math. 2022. V. 43. № 5. P. 1098–1103.
  7. 7. Newman B., Patel R., Savage S., Tjio H. Three-dimensional wall jet originating from a circular orifice // Aeron. Quart. 1972. V. 23. № 3. P. 188–200.
  8. 8. Matsuda H., Iida S., Hayakawa M. Coherent structures in a three-dimensional wall jet // ASME. J. Fluids Eng. 1990. V. 112. № 4. P. 462–467.
  9. 9. Padmanabham G., Lakshmana Gowda B.H. Mean and turbulence characteristics of a class of three-dimensional wall jets. Pt. 1: Mean flow characteristics // ASME. J. Fluids Eng. 1991. V. 113. № 4. P. 620–628.
  10. 10. Law A.W.-K., Herlina. An experimental study on turbulent circular wall jets // J. Hydraul. Eng. 2002. V. 128. № 2. P. 161–174.
  11. 11. Sun H., Ewing D. Effect of initial and boundary conditions on development of three-dimensional wall jets // 40th AIAA Aerospace Sci. Meeting&Exhibit. 2002. P. 733.
  12. 12. Hall J.W., Ewing D. Three-dimensional turbulent wall jets issuing from moderate-aspect-ratio rectangular channels // AIAA J. 2007. V. 45. P. 1177–1186.
  13. 13. Inoue Y., Yano H., Yamashita S. Experimental study on a three-dimensional wall jet // J. Fluid Sci.&Technol. 2007. V. 2. № 3. P. 655–664.
  14. 14. Namgyal L., Hall J. Reynolds stress distribution and turbulence generated secondary flow in the turbulent three-dimensional wall jet // J. Fluid Mech. 2016. V. 800. P. 613–644.
  15. 15. Agelin-Chaab M., Tachie M.F. Characteristics of turbulent three-dimensional wall jets // ASME. J. Fluids Eng. 2011. V. 133. № 2.
  16. 16. Pani B.S., Rajaratnam N. Swirling circular turbulent wall jets // J. Hydraul. Res. 1976. V. 14. № 2. P. 145–154.
  17. 17. Kumar S., Kumar A. Effect of initial conditions on mean flow characteristics of a three dimensional turbulent wall jet // Proc. Inst. Mech. Engineers, Pt. C: J. Mech. Engng. Sci. 2021. V. 235. № 22. P. 6177–6190.
  18. 18. Craft T., Launder B. On the spreading mechanism of the three-dimensional turbulent wall jet // J. Fluid Mech. 2001. V. 435. P. 305–326.
  19. 19. Khosronejad A., Rennie C.D. Three-dimensional numerical modeling of unconfined and confined wall-jet flow with two different turbulence models // Canadian J. Civil Engng. 2010. V. 37. № 4. P. 576–587.
  20. 20. Kakka P., Anupindi K. Flow and thermal characteristics of three-dimensional turbulent wall jet // Phys. Fluids. 2021. V. 33. № 2.
  21. 21. Nicoud F., Ducros F. Subgrid-scale stress modelling based on the square of the velocity gradient tensor // Flow, Turbul. & Combust. 1999. V. 62. № 3. P. 183–200.
  22. 22. Van Doormaal J.P., Raithby G.D. Enhancements of the SIMPLE method for predicting incompressible fluid flows // Numer. Heat Transfer. 1984. V. 7. № 2. P. 147–163.
  23. 23. Menter F.R. Best Practice: Scale-Resolving Simulations in Ansys CFD. https://www.ansys.com/content/dam/product/fluids/cfd/tb-best-practices-scale-resolving-models.pdf.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library