ОЭММПУПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

Асимптотики длинных стоячих волн в одномерных бассейнах с пологими берегами: теория и эксперимент

Код статьи
10.31857/S0032823523020066-1
DOI
10.31857/S0032823523020066
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 87 / Номер выпуска 2
Страницы
157-175
Аннотация
В статье построены периодические по времени асимптотические решения одномерной нелинейной системы уравнений мелкой воды в бассейне переменной глубины \(D(x)\) с двумя пологими берегами (что означает обращение в нуль функции \(D(x)\) в точках, задающих берег) или с одним пологим берегом и вертикальной стенкой. Такие решения описывают стоячие волны, аналогичные известным волнам Фарадея в бассейнах с вертикальными стенками. В частности, они приближенно описывают сейши в протяженных бассейнах. Конструкция таких решений состоит из двух этапов. Сначала определяются гармонические по времени точные и асимптотические решения линеаризованной системы, порожденные собственными функциями оператора \(d{\text{/}}dxD(x)d{\text{/}}dx\), а затем с помощью недавно развитого подхода, основанного на упрощении и модификации преобразования Кэрриера–Гринспена, по ним в параметрической форме восстанавливаются решения нелинейных уравнений. Полученные асимптотические решения сравниваются с результатами эксперимента, основанного на возбуждении волн в бассейне с помощью параметрического резонанса.
Ключевые слова
нелинейные уравнения мелкой воды преобразование типа Кэрриера–Гринспена асимптотические решения стоячие волны стендовый эксперимент
Дата публикации
01.02.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
20

Библиография

  1. 1. Stoker J.J. Water Waves: The Mathematical Theory with Applications. New York: Wiley, 1958. 609 p.
  2. 2. Сретенский Л.Н. Теория волновых движений жидкости. М.: Наука, 1977. 816 с.
  3. 3. Mei C.C. The Applied Dynamics of Ocean Surface Waves. Singapore: World Sci., 1989. 768 p.
  4. 4. Пелиновский Е.Н. Гидродинамика волн цунами. Н. Новгород: ИПФ РАН, 1996. 276 с.
  5. 5. Pelinovsky E.N., Mazova R.Kh. Exact analytical solutions of nonlinear problems of tsunami wave run-up on slopes with different profiles // Natural Hazards, 1992. V. 6. P. 227–249.
  6. 6. Lamb H. Hydrodynamics. Cambridge: Univ. Press, 1932. 738 p.
  7. 7. Chrystal G. XXV. On the hydrodynamical theory of seiches // Trans. Roy. Soc. Edinburgh. 1906. V. 41. P. 599–649.
  8. 8. Оболенский В.Н. Сейши и их теория // Записки по гидрографии. 1919. Т. 42. № 2. С. 13–76.
  9. 9. Rabinovich A.B. Seiches and harbor oscillations // Handbook of Coastal&Ocean Engng. 2009. P. 193–236.
  10. 10. Арсеньева Н.М., Давыдов Л.К., Дубровина Л.Н., Конкина Н.Г. Сейши на озерах СССР. Л.: Изд-во Ленингр. ун-та, 1963. 184 с.
  11. 11. Зырянов В.Н. Сейши подо льдом // Водные ресурсы. 2011. Т. 38. № 3. С. 259–271.
  12. 12. Смирнов С.В., Кучер К.М., Гранин Н.Г., Стурова И.В. Сейшевые колебания Байкала // Изв. РАН. ФАО. 2014. Т. 50. № 1. С. 105–116.
  13. 13. Олейник О.А., Радкевич Е.В. Уравнения второго порядка с неотрицательной характеристической формой // в: Итоги науки. Сер. Матем. Матем. анал. 1969. М.: ВИНИТИ, 1971. 252 с.
  14. 14. Vukašinac T., Zhevandrov P. Geometric asymptotics for a degenerate hyperbolic equation // Russ. J. Math. Phys. 2002. V. 9. № 3. P. 371–381.
  15. 15. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981. 512 с.
  16. 16. Бирман М.Ш., Соломяк М.З. Спектральная теория самосопряженных операторов в гильбертовом пространстве. СПб.: Лань, 2010. 457 с.
  17. 17. Доброхотов С.Ю., Назайкинский В.Е. Нестандартные Лагранжевы особенности и асимптотические собственные функции вырождающегося оператора // Тр. МИАН. 2019. Т. 306. С. 83–99.
  18. 18. Dobrokhotov S.Yu., Minenkov D.S., Nazaikinskii V.E. Asymptotic solutions of the Cauchy problem for the nonlinear shallow water equations in a basin with a gently sloping beach // Russ. J. Math. Phys. 2022. V. 29. P. 28–36.
  19. 19. Carrier G.F., Greenspan H.P. Water waves of finite amplitude on a sloping beach // J. Fluid Mech. 1958. V. 4. P. 97–109.
  20. 20. http://www.ipmnet.ru/uniqequip/gfk/#aboutDSO
  21. 21. Калиниченко В.А., Нестеров С.В., Секерж-Зенькович С.Я., Чайковский А.А. Экспериментальное исследование поверхностных волн при резонансе Фарадея // Изв. РАН. МЖГ. 1995. № 1. С. 122–129.
  22. 22. White P., Watson W. Some experimental results in connection with the hydrodynamical theory of seiches // Proc. R. Soc. Edinb. 1906. V. 26. № 01. P. 142–156.
  23. 23. Калиниченко В.А., Секерж-Зенькович С.Я. Экспериментальное исследование волн Фарадея максимальной высоты // Изв. РАН. МЖГ. 2007. № 6. С. 120–126.
  24. 24. Калиниченко В.А., Нестеров С.В., Со А.Н. Волны Фарадея в прямоугольном сосуде с локальными нерегулярностями дна // Изв. РАН. МЖГ. 2015. № 4. С. 83–91.
  25. 25. Калиниченко В.А., Нестеров С.В., Со А.Н. Стоячие поверхностные волны в прямоугольном сосуде с локальными нерегулярностями стенок и дна // Изв. РАН. МЖГ. 2017. № 2. С. 65–74.
  26. 26. Доброхотов С.Ю., Тироцци Б. Локализованные решения одномерной нелинейной системы уравнений мелкой воды со скоростью // УМН. 2010. Т. 65. № 1 (391). С. 185–186.
  27. 27. Доброхотов С.Ю., Медведев С.Б., Миненков Д.С. О заменах, приводящих одномерные системы уравнений мелкой воды к волновому уравнению со скоростью звука // Матем. зам. 2013. Т. 93. № 5. С. 725–736.
  28. 28. Чиркунов Ю.А., Доброхотов С.Ю., Медведев С.Б., Миненков Д.С. Точные решения одномерных уравнений мелкой воды над ровным и наклонным дном // ТМФ. 2014. Т. 178. № 3. С. 322–345.
  29. 29. Didenkulova I., Pelinovsky E. Non-dispersive traveling waves in inclined shallow water channels // Phys. Lett. A. 2009. V. 373. № 42. P. 3883–3887.
  30. 30. Rybkin A., Pelinovsky E., Didenkulova I. Non-linear wave run-up in bays of arbitrary cross-section: generalization of the Carrier–Greenspan approach // J. Fluid Mech. 2014. V. 748. P. 416–432.
  31. 31. Anderson D., Harris M., Hartle H. et al. Run-up of long waves in piecewise sloping U-shaped bays // Pure Appl. Geophys. 2017. V. 174. P. 3185–3207.
  32. 32. Rybkin A., Nicolsky D., Pelinovsky E., Buckel M. The generalized Carrier–Greenspan transform for the shallow water system with arbitrary initial and boundary conditions // Water Waves. 2021. V. 3. № 1. P. 267–296.
  33. 33. Antuono M., Brocchini M. The boundary value problem for the nonlinear shallow water equations // Studies in Appl. Math. 2007. V. 119. № 1. P. 73–93.
  34. 34. Миненков Д.С. Асимптотики решений одномерной нелинейной системы уравнений мелкой воды с вырождающейся скоростью // Матем. зам. 2012. Т. 92. № 5. С. 721–730.
  35. 35. Chugunov V.A., Fomin S.A., Noland W., Sagdiev B.R. Tsunami runup on a sloping beach // Comp.&Math. Meth. 2020. № 2. P. e1081.
  36. 36. Minenkov D.S. Asymptotics near the shore for 2D shallow water over sloping planar bottom // Days on Diffraction (DD). 2017. P. 240–243.
  37. 37. Аксенов А.В., Доброхотов С.Ю., Дружков К.П. Точные решения типа “ступеньки” одномерных уравнений мелкой воды над наклонным дном // Матем. зам. 2018. Т. 104. № 6. С. 930–936.
  38. 38. Боголюбов Н.Н., Митропольский Ю.А. Асимптотические методы в теории нелинейных колебаний. М.: Наука, 1974. 504 с.
  39. 39. Арнольд В.И. Математические методы классической механики. М.: Ленанд, 2017. 416 с.
  40. 40. Арнольд В.И., Козлов В.В., Нейштадт А.И. Математические аспекты классической и небесной механики. М.: УРСС, 2002. 414 с.
  41. 41. Galvin C.J. Breaker type classification on three laboratory beaches //J. Geophys. Res. 1968. V. 73. P. 12. P. 3651–3659.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека