ОЭММПУПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

К теории метода “эхоскопии” призабойной зоны скважины в низкопроницаемом пласте, подверженным ГРП

Код статьи
10.31857/S0032823523020042-1
DOI
10.31857/S0032823523020042
Тип публикации
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 87 / Номер выпуска 2
Страницы
314-326
Аннотация
Строится математическая модель, описывающая эволюцию импульсного сигнала в скважине при наличии продольной или поперечной трещины ГРП в призабойном участке. Полагается, что из устья скважины сигнал посылается с длиной волны большей диаметра скважины и длины открытого участка скважины. По динамике “эха” импульсного сигнала, возвратившегося к устью скважины, можно судить о качестве гидроразрыва пласта. Приведены результаты численных расчетов для импульса колоколообразной формы. Показано, что при диагностике трещин в качестве флюида, по которому распространяется сигнал, более предпочтительна вода, чем нефть.
Ключевые слова
импульсный сигнал гидроразрыв пласта нефтяная скважина фаза волны коэффициент отражения гармонические волны
Дата публикации
01.02.2023
Год выхода
2023
Всего подписок
0
Всего просмотров
19

Библиография

  1. 1. Кременецкий М.И., Ипатов А.И. Гидродинамические и промыслово-технологические исследования скважин. М.: МАКС Пресс, 2008. 475 с.
  2. 2. Экономидес М. Унифицированный дизайн гидроразрыва пласта: от теории к практике. М.; Ижевск: Институт компьютерных технологий, 2007. 237 с.
  3. 3. Байков В.А., Булгакова Г.Т., Ильясов А.М., Кашапов Д.В. К оценке геометрических параметров трещины гидроразрыва пласта // Изв. РАН. МЖГ. 2018. № 5. С. 64–75.
  4. 4. Башмаков Р.А., Насырова Д.А., Шагапов В.Ш. Собственные колебания жидкости в скважине, сообщающейся с пластом, при наличии трещины ГРП // ПММ. 2022. Т. 86. № 1. С. 88–104.
  5. 5. Holzhausen G.R., Gooch R.P. Impedance of Hydraulic Fractures: Its Measurement and Use for Estimating Fracture Closure Pressure and Dimensions // Paper presented at the SPE/DOE Low Permeability Gas Reservoirs Symp., Denver / Colorado, May 1985. Paper Number: SPE- SPE-13892-MS.
  6. 6. Wang X., Hovem K., Moos D., Quan Y. Water Hammer Effects on Water Injection Well Performance and Longevity // SPE Int. Symp. Exhib. on Formation Damage Control, 2008, SPE-112282-MS. https://doi.org/10.2118/112282-MS
  7. 7. Шагапов В.Ш., Галиакбарова Э.В., Хакимова З.Р. К теории локального зондирования трещин, образовавшихся при гидроразрыве пласта, с использованием импульсных волн давления // ПМТФ. 2021. Т. 62. № 4. С. 46–56.
  8. 8. Галиакбарова Э.В. Влияние проводимости гидроразрывной трещины на возможность диагностирования с помощью акустического “телевизора”// Вестн. Башкирск. ун-та. 2021. Т. 26. № 4. С. 866–870.
  9. 9. Шагапов В.Ш., Нагаева З.М., Аносова Е.П. Упругий режим фильтрации жидкости к скважине через перпендикулярную ей трещину, образовавшуюся при гидроразрыве пласта // ПМТФ. 2022. Т. 63. № 4 (374). С. 105–115.
  10. 10. Нагаева З.М., Шагапов В.Ш. Об упругом режиме фильтрации в трещине, расположенной в нефтяном или газовом пласте // ПММ. 2017. Т. 81. № 3. С. 319–329.
  11. 11. Лайонс Р. Цифровая обработка сигналов. М.: ООО “Бином-Пресс”, 2006. 656 с.
  12. 12. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VI. Гидродинамика. М.: Наука, 1986. 736 с.
  13. 13. Айфичер Э.C., Джервис Б.У. Цифровая обработка сигналов: практический подход. М.: Издат. дом “Вильямс”, 2004. 992 с.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека