RAS Energy, Mechanics & ControlПрикладная математика и механика Journal of Applied Mathematics and Mechanics

  • ISSN (Print) 0032-8235
  • ISSN (Online) 3034-5758

On the Contact Problem with Deformable Stamp in the Quarter Plain

PII
10.31857/S0032823523020030-1
DOI
10.31857/S0032823523020030
Publication type
Status
Published
Authors
Volume/ Edition
Volume 87 / Issue number 2
Pages
303-313
Abstract
In this paper, for the first time, a two-dimensional dynamic contact problem on the action of a deformable stamp on a quarter of the plane of a multilayer medium is strictly mathematically investigated. In contrast to the case of an absolutely solid stamp, a deformable stamp introduces additional features, consisting in the possibility of the occurrence of discrete resonances predicted by academician I.I. Vorovich. The paper shows that the use of a method based on the use of block elements makes it possible to obtain an equation describing resonant frequencies. To study contact problems with a deformable stamp made of materials of complex rheology, including smart materials, it is proposed in the paper to first conduct a study for the case of a deformable stamp made of a material of simple rheology described by Helmholtz equations. Solutions of boundary value problems for stamps of complex rheology, after that, are represented by a combination of solutions of boundary value problems for stamps of simple rheology.
Keywords
контактная задача блочный элемент деформируемый штамп интегральное уравнение Винера–Хопфа
Date of publication
01.02.2023
Year of publication
2023
Number of purchasers
0
Views
32

References

  1. 1. Ворович И.И. Спектральные свойства краевой задачи теории упругости для неоднородной полосы // Докл. АН СССР. 1979. Т. 245. № 4. С. 817–820.
  2. 2. Ворович И.И. Резонансные свойства упругой неоднородной полосы // Докл. АН СССР. 1979. Т. 245. № 5. С. 1076–1079.
  3. 3. Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. М.: Наука, 1999. 246 с.
  4. 4. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элементов и новый универсальный метод моделирования // Докл. РАН. 2021. Т. 499. С. 21–26. https://doi.org/10.31857/S2686740021040039
  5. 5. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О контактных задачах с деформируемым штампом // Пробл. прочн. и пластич. 2022. Т. 84. № 1. С. 25–34. https://doi.org/10.32326/1814-9146-2022-84-1-25-34
  6. 6. Горячева И.Г., Добычин М.Н. Контактные задачи трибологии. М.: Машиностроение, 1988. 256 с.
  7. 7. Papangelo A., Ciavarella M., Barber J.R. Fracture Mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws // Proc. Roy. Soc. 2015. A 471. Iss. 2180: Art. No. 20150271.
  8. 8. Ciavarella M. The generalized Cattaneo partial slip plane contact problem. I-Theory, II-Examples // Int. J. Solids Struct. 1998. V. 35. P. 2349–2378.
  9. 9. Zhou S., Gao X.L. Solutions of half-space and half-plane contact problems based on surface elasticity // Zeitschrift fr angewandte Mathematik und Physik. 2013. V. 64. P. 145–166.
  10. 10. Guler M.A., Erdogan F. The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings // Int. J. Mech. Sci. 2007. V. 49. P. 161–182.
  11. 11. Ke L.-L., Wang Y.-S. Two-dimensional sliding frictional contact of functionally graded materials // Eur. J. Mech. A/Solids. 2007. V. 26. P. 171–188.
  12. 12. Almqvist A., Sahlin F., Larsson R., Glavatskih S. On the dry elasto-plastic contact of nominally flat surfaces // Tribol. Int. 2007. V. 40 (4). P. 574–579. https://doi.org/10.31857/S0032823522050046
  13. 13. Almqvist A. An lcp solution of the linear elastic contact mechanics problem // http://www.mathworks.com/matlabcentral/fileexchange/43216.
  14. 14. Andersson L.E. Existence results for quasistatic contact problems with Coulomb friction // Appl. Math. Optim. 2000. V. 42. P. 169–202.
  15. 15. Cocou M. A class of dynamic contact problems with Coulomb friction in viscoelasticity // Nonlin. Anal.: Real World Appl. 2015. V. 22. P. 508–519.
  16. 16. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Точное решение универсальным методом моделирования контактной задачи в четверти плоскости многослойной среды // ПММ. 2022. Т. 86. Вып. 5. С. 628–637.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library