- PII
- 10.31857/S0032823523020029-1
- DOI
- 10.31857/S0032823523020029
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 87 / Issue number 2
- Pages
- 200-210
- Abstract
- The three-dimensional stationary flow of two immiscible liquids in a layer bounded by solid parallel walls is investigated. The upper wall is thermally insulated, and the lower one has a temperature field quadratic in horizontal coordinates. Velocity fields in liquids have a special form: their horizontal components are linear in the coordinates of the same name. The resulting conjugate boundary value problem in the framework of the Oberbeck–Boussinesq model is inverse and is reduced to a system of ten integro-differential equations. For small Marangoni numbers (creeping current), the problem is solved analytically. The nonlinear problem is solved by the tau method. It is shown that the solution of the nonlinear problem with a decrease in the Marangoni number is approximated by the solution of the creeping flow problem. The analysis of the influence of physical and geometric parameters, as well as the behavior of temperature on the substrate, on the structure of convection in layers is carried out.
- Keywords
- уравнения Обербека–Буссинеска термокапиллярность обратная задача
- Date of publication
- 01.02.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 21
References
- 1. Hiemenz K. Die Grenzschicht an einem in den gleichförmigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder // Dinglers Poliytech. J. 1911. V. 326. P. 321–440.
- 2. Howann F. Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel // Zeitschrift für Angewandte Mathematik und Mechanik. 1936. V. 16. P. 153–164.
- 3. Howarth L. The boundary layer in three-dimensional flow. Part II. The flow near a stagnation point // Lond. Edinb. Dubl. Phil. Mag.: Ser. 7. 1951. V. 42. № 335. P. 1433–1440.
- 4. Davey A. Boundary-layer flow at a saddle point of attachment // J. Fluid Mech. 1961. V. 10. № 4. P. 593–610.
- 5. Wang C.Y. Axisymmetric stagnation flow on a cylinder // Q. Appl. Math. 1974. V. 32. № 2. P. 207–213.
- 6. Gorla R.S.R. Unsteady laminar axisymmetric stagnation flow over a circular cylinder // Develop. Mech. 1977. V. 9. P. 286–288.
- 7. Bekezhanova V.B., Andreev V.K., Shefer I.A. Influence of heat defect on the characteristics of a two-layer flow with the Hiemenz-type velocity // Interfac. Phenom.&Heat Transfer. 2019. V. 7. I. 4. P. 345–364.
- 8. Lin C.C. Note on a class of exact solutions in magnetohydrodynamics // Arch. Rational Mech. Anal. 1958. V. 1. P. 391–395.
- 9. Сидоров А.Ф. О двух классах решений уравнений механики жидкости и газа и их связи с теорией бегущих волн // ПМТФ. 1989. № 2. С. 34–40.
- 10. Andreev V.K. On a creeping 3D convective motion of fluids with an isothermal interface // J. Sib. Fed. Univ. Math.&Phys. 2020. V. 13. № 6. P. 661–669.
- 11. Азанов А.А., Андреев В.К. Решение задачи о ползущем движении жидкости со свободной границей со специальным полем скоростей в трехмерной полосе // Некоторые актуальные проблемы современной математики и математического образования. Герценовские чтения – 2021. Матер. научн. конф. СПб.: Изд. РГПУ им. А.И. Герцена. Изд. ВВМ. 2021. С. 42–54.
- 12. Andreev V.K., Lemeshkova E.N. Two-layer steady creeping thermocapillary flow in a three-dimensional channel // J. Appl. Mech. Tech. Phys. 2022. V. 63. № 1. P. 82–88.
- 13. Andreev V.K. On a creeping 3D convective motion of fluids with an isothermal interface // J. Sib. Fed. Univ. Math.&Phys. 2020. V. 13 (6). P. 661–669.
- 14. Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachev V.V. Mathematical Models of Convection. Berlin; Boston: De Gruyter, 2020.
- 15. Аристов С.Н., Князев Д.В., Полянин А.Д. Точные решения уравнений Навье–Стокса с линейной зависимостью компонент скорости от двух пространственных переменных // Теорет. основы хим. технол. 2009. Т. 43. № 5. С. 547–566.
- 16. Джозеф Д. Устойчивость движений жидкости. М.: Мир, 1981. 638 с.
- 17. Pukhnachev V.V. Model of viscous layer deformation by thermocapillary forces // Eur. J. Appl. Math. 2002. V. 13. № 2. P. 205–224.
- 18. Rezanova E.V. Numerical modelling of heat transfer in the layer of viscous incompressible liquid with free boundaries // EPJ Web Conf. 2017. № 159. P. 00047.
- 19. Zeytounian R.Kh. The Benard–Marangoni thermocapillary instability problem // UFN. 1998. V. 168. № 3. P. 259–286.
- 20. Богданов С.Н., Бурцев С.И., Иванов О.П., Куприянова А.В. Холодильная техника. Кондиционирование воздуха. Свойства веществ: Справ. / Под ред. Богданова С.Н. СПб.: СПбГАХПТ, 1999. 320 с.
- 21. Fletcher C.A.J. Computational Galerkin Method. Springer, 1984.